当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Sustainable and Bench-Stable Photoactive Aqueous Nanoaggregates of Cu(II) for ppm Level Cu(I) Catalysis in Water
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2022-06-16 , DOI: 10.1002/adfm.202204459
Sudripet Sharma 1 , Saurav Parmar 1 , Faisal Ibrahim 1 , Adam H. Clark 2 , Maarten Nachtegaal 2 , Jacek B. Jasinski 3 , Fabrice Gallou 4 , Pawel M. Kozlowski 1 , Sachin Handa 1
Affiliation  

The nanomaterial containing amphiphile-stabilized mononuclear Cu(II) is developed. The material is characterized by various spectroscopic techniques, such as X-ray absorption spectrscopy (XAS), high-resolution transmission electron microscopy, nuclear magnetic resonance (NMR), UV-vis, and infrared spectroscopies. Since the structural data for the amphiphile-bound Cu(II) center is not available, a theoretical model based on DFT calculations is employed. The analyses based on NMR spectroscopic data, including the isotope labeling, support that the tertiary amide group of the amphiphile binds to the Cu surface. Likewise, the bond distances found by XAS spectroscopy agree with the theoretical model. Time-dependent DFT studies predict that the low-lying excited state has a dominant ligand-to-metal charge transfer (LMCT) character. Cu(II) changes to Cu(I) assisted by the LMCT excitation upon visible light irradiation, generating robust catalytically active species. The catalytic activity for domino azidation-[3+2] cycloaddition reactions in water is investigated. The catalytic protocol is applicable on various substrates, and the catalytic material is stable under ambient conditions for up to three months.

中文翻译:

用于水中 ppm 级 Cu(I) 催化的可持续和台架稳定的 Cu(II) 光活性水性纳米聚集体

开发了含有两亲物稳定的单核Cu(II)的纳米材料。该材料通过各种光谱技术进行表征,例如 X 射线吸收光谱 (XAS)、高分辨率透射电子显微镜、核磁共振 (NMR)、紫外可见和红外光谱。由于两亲结合的 Cu(II) 中心的结构数据不可用,因此采用了基于 DFT 计算的理论模型。基于 NMR 光谱数据(包括同位素标记)的分析支持两亲物的叔酰胺基团与 Cu 表面结合。同样,XAS 光谱发现的键距与理论模型一致。时间依赖性 DFT 研究预测,低位激发态具有主要的配体-金属电荷转移 (LMCT) 特性。在可见光照射下,LMCT 激发辅助 Cu(II) 转变为 Cu(I),产生强大的催化活性物质。研究了多米诺叠氮-[3+2]环加成反应在水中的催化活性。催化协议适用于各种基材,催化材料在环境条件下可稳定长达三个月。
更新日期:2022-06-16
down
wechat
bug