当前位置: X-MOL 学术Ultrason. Sonochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Production and dispersion of free radicals from transient cavitation Bubbles: An integrated numerical scheme and applications
Ultrasonics Sonochemistry ( IF 8.7 ) Pub Date : 2022-06-16 , DOI: 10.1016/j.ultsonch.2022.106067
Kewen Peng 1 , Frank G F Qin 1 , Runhua Jiang 1 , Wanjun Qu 1 , Qianxi Wang 2
Affiliation  

As an advanced oxidation process with a wide range of applications, sonochemistry relies on acoustic cavitation to induce free radicals for degrading chemical contaminants. The complete process includes two critical steps: the radical production inside the cavitation bubble, and the ensuing dispersion of these radicals into the bulk solution. To grasp the physicochemical details in this process, we developed an integrated numerical scheme with the ability to quantitatively describe the radical production-dispersion behavior. It employs coupled simulations of bubble dynamics, intracavity chemical reactions, and diffusion–reaction-dominated mass transport in aqueous solutions. Applying this method to the typical case of argon and oxygen bubbles, the production mechanism for the main radicals is revealed. Moreover, the temporal-spatial distribution of the radicals in the liquid phase is presented. The results demonstrate that the enhanced radical production observed in oxygen bubbles can be traced to the initiation reaction O2 + H2O → OHradical dot+HOradical dot2, which requires relatively low activation energy. In the outside liquid region, the dispersion of radicals is limited by robust recombination reactions. The simulated penetration depth of OHradical dot is around 0.2 μm and agrees with reported experimental measurements. The proposed numerical approach can be employed to better capture the radical activity and is instrumental in optimizing the engineering application of sonochemistry.



中文翻译:


瞬态空化气泡自由基的产生和分散:综合数值方案和应用



作为一种具有广泛应用的高级氧化过程,声化学依靠声空化来诱导自由基来降解化学污染物。完整的过程包括两个关键步骤:空化泡内自由基的产生,以及随后这些自由基分散到本体溶液中。为了掌握这个过程中的物理化学细节,我们开发了一个集成的数值方案,能够定量描述自由基的产生-分散行为。它采用了气泡动力学、腔内化学反应和水溶液中扩散反应主导的传质的耦合模拟。将该方法应用于氩气和氧气气泡的典型情况,揭示了主要自由基的产生机制。此外,还给出了液相中自由基的时空分布。结果表明,在氧气泡中观察到的自由基产生增强可以追溯到引发反应 O 2 + H 2 O → OH radical dot +H2O radical dot 2 、需要相对较低的活化能。在外部液体区域,自由基的分散受到强烈的重组反应的限制。 OH的模拟渗透深度 radical dot 约为 0.2 μm,与报告的实验测量结果一致。所提出的数值方法可用于更好地捕获自由基活性,并有助于优化声化学的工程应用。

更新日期:2022-06-16
down
wechat
bug