当前位置: X-MOL 学术J. Clin. Monit. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development and validation of a model to calculate anesthetic agent consumption from inspired and end-expired concentrations, minute ventilation, fresh gas flow and dead space ventilation
Journal of Clinical Monitoring and Computing ( IF 2.2 ) Pub Date : 2022-06-16 , DOI: 10.1007/s10877-022-00883-5
Louise Cuveele 1, 2, 3 , Jan F A Hendrickx 2, 3, 4, 5, 6 , Andre M De Wolf 7 , Sofie De Cooman 8 , Brian B Chesebro 9 , Jeffrey Feldman 10 , Jodi Sherman 11
Affiliation  

Anesthetic agent consumption is often calculated as the product of fresh gas flow (FGF) and vaporizer dial setting (FVAP). Because FVAP of conventional vaporizers is not registered in automated anesthesia records, retrospective agent consumption studies are hampered. The current study examines how FVAP can be retrospectively calculated from the agent’s inspired (FIN) and end-expired concentration (FET), FGF, and minute ventilation (MV). Theoretical analysis of agent mass balances in the circle breathing reveals FVAP = [FIN − (dead space fraction * FIN + (1 − dead space fraction) * FET) * (1 − FGF/MV)]/(1-(1 − FGF/MV)). FIN, FET, FGF and MV are routinely monitored, but dead space fraction is unknown. Dead space fraction for sevoflurane, desflurane, and isoflurane was therefore determined empirically from an unpublished data set of 161 patient containing FVAP, FIN, FET, MV and FGF ranging from 0.25 to 8 L/min delivered via an ADU® (GE, Madison, WI, USA). Dead space fraction for each agent was determined empirically by having Excel’s solver function calculate the value of dead space fraction that minimized the sum of the squared differences between dialed FVAP and predicted FVAP. With dead space fraction known, the model was then prospectively tested for sevoflurane in O2/air using data collected over the course of two weeks with one FLOW-i (Getinge, Solna, Sweden) and one Zeus workstation (Dräger, Lübeck, Germany). Because both workstations use an electronically controlled vaporizer/injector, the dialed FVAP were available to allow the calculation of median performance error (MDPE) and median absolute performance error (MDAPE). MDPE and MDAP are reported as median and interquartiles. The empirical dead space fraction for isoflurane, sevoflurane, and desflurane were 0.59, 0.49, and 0.66, respectively. For prospective testing, a total of 149.4 h of useful data were collected from 78 patient with the Zeus and Flow-i combined, with FGF ranging from 0.18 to 8 L/min. The model predicted dialed FVAP well, with a MDPE of −1 (−11, 6) % and MDAPE of 8 (4, 17) %. FVAP can be retrospectively calculated from FIN, FET, FGF, and MV plus an agent specific dead space fraction factor with a degree of error that we believe suffices for retrospective sevoflurane consumption analyses. Performance with other agents and N2O awaits further validation.



中文翻译:

开发和验证模型以根据吸入和呼气末浓度、每分钟通气量、新鲜气体流量和死腔通气量计算麻醉剂消耗量

麻醉剂消耗量通常计算为新鲜气体流量 (FGF) 和蒸发器刻度盘设置 (F VAP ) 的乘积。由于传统汽化器的 F VAP未在自动麻醉记录中注册,因此回顾性药物消耗研究受到阻碍。当前的研究检查了如何根据药剂的吸入浓度 (F IN ) 和呼气末浓度 (F ET )、FGF 和分钟通气量 (MV)回顾性地计算 F VAP 。循环呼吸中药剂质量平衡的理论分析表明 F VAP  = [F IN  − (死腔分数 * F IN  + (1 − 死腔分数) * F ET) * (1 − FGF/MV)]/(1-(1 − FGF/MV))。F IN、 F ET、 FGF 和 MV 被常规监测,但死腔分数未知。因此,七氟醚、地氟醚和异氟醚的死腔分数是根据 161 名患者的未发表数据集凭经验确定的,该数据集包含 F VAP、 F IN、 F ET、 MV 和 FGF,范围从 0.25 到 8 L/min,通过 ADU® (GE ,美国威斯康星州麦迪逊)。每个试剂的死腔分数根据经验确定,方法是让 Excel 的求解器函数计算死腔分数的值,该值最小化拨出的 F VAP和预测的 F VAP之间的平方差之和. 已知死腔部分后,使用一台 FLOW-i(Getinge,瑞典索尔纳)和一台 Zeus 工作站(德尔格,德国吕贝克)在两周内收集的数据,对模型进行 O 2 /空气中七氟醚的前瞻性测试). 因为两个工作站都使用电子控制的汽化器/注射器,所以拨打的 F VAP可用于计算中值性能误差 (MDPE) 和中值绝对性能误差 (MDAPE)。MDPE 和 MDAP 报告为中位数和四分位数。异氟醚、七氟醚和地氟醚的经验死腔分数分别为 0.59、0.49 和 0.66。对于前瞻性测试,使用 Zeus 和 Flow-i 组合从 78 名患者收集了总共 149.4 小时的有用数据,FGF 范围为 0.18 至 8 L/min。该模型很好地预测了拨号 F VAP,MDPE 为 −1 (−11, 6) %,MDAPE 为 8 (4, 17) %。F VAP可以从 F IN , F ET追溯计算、FGF 和 MV 加上具有一定程度误差的药剂特定死腔分数因子,我们认为足以进行回顾性七氟醚消耗分析。与其他试剂和 N 2 O 的性能等待进一步验证。

更新日期:2022-06-17
down
wechat
bug