当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding and Utilizing Reactive Oxygen Reservoirs in Atomic Layer Deposition of Metal Oxides with Ozone
Chemistry of Materials ( IF 7.2 ) Pub Date : 2022-06-15 , DOI: 10.1021/acs.chemmater.2c00753
Joel R. Schneider 1 , Camila de Paula 1 , Nathaniel E. Richey 1 , Jon G. Baker 1 , Solomon T. Oyakhire 1 , Stacey F. Bent 1
Affiliation  

Contrary to idealized depictions, atomic layer deposition (ALD) reactions do not always take place solely at the gas–solid interface. The iron oxide ALD system was recently shown to grow by a subsurface mechanism in which reactive oxygen is absorbed into the growing film during ozone exposure, forming an effective reservoir of oxygen. This study investigates the fundamental chemical mechanisms behind the oxygen reservoir phenomenon and extends it to other binary and multicomponent oxide ALD systems. NiO ALD is found to exhibit similar saturation behavior and crystallinity trends with ozone as Fe2O3 ALD. Oxygen uptake from ozone into the film is directly detected in situ for both processes, and in vacuo spectroscopy elucidates possible chemical states of the subsurface oxygen reservoirs in each material. In situ process characterization reveals that the reserved oxygen participates in surface combustion reactions capable of activating ALD growth. The oxygen reservoir mechanism is also shown to generalize to other oxide systems, correlating with trends in oxygen mobility, crystallinity, and metal oxidizability. Finally, the reactive oxygen reservoirs are utilized in the deposition of a multicomponent FeAlxOy material, previously unreported by ALD, revealing that the reserved oxygen can activate the growth of other processes and possesses the potential to address nucleation challenges in other ALD systems.

中文翻译:

了解和利用活性氧库在金属氧化物原子层沉积中的臭氧

与理想化的描述相反,原子层沉积 (ALD) 反应并不总是仅发生在气固界面上。最近显示氧化铁 ALD 系统通过一种地下机制生长,其中活性氧在臭氧暴露期间被吸收到生长膜中,形成有效的氧气储层。本研究调查了储氧现象背后的基本化学机制,并将其扩展到其他二元和多组分氧化物 ALD 系统。发现 NiO ALD 对臭氧表现出与 Fe 2 O 3 ALD相似的饱和行为和结晶度趋势。两种工艺的原位和真空中直接检测从臭氧吸收到薄膜中的氧气光谱学阐明了每种材料中地下氧储层的可能化学状态。原位工艺表征表明,保留的氧参与了能够激活 ALD 生长的表面燃烧反应。氧储存机制也被证明可以推广到其他氧化物系统,与氧迁移率、结晶度和金属氧化性的趋势相关。最后,活性氧储层被用于沉积多组分 FeAl x O y材料,此前 ALD 没有报道,这表明保留的氧可以激活其他过程的生长,并具有解决其他 ALD 系统中成核挑战的潜力。
更新日期:2022-06-15
down
wechat
bug