当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photo-Electrochemical Conversion of CO2 Under Concentrated Sunlight Enables Combination of High Reaction Rate and Efficiency
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-06-15 , DOI: 10.1002/aenm.202200585
Etienne Boutin 1 , Mahendra Patel 1 , Egon Kecsenovity 2 , Silvan Suter 1 , Csaba Janáky 2 , Sophia Haussener 1
Affiliation  

Photo-electrochemical production of solar fuels from carbon dioxide, water, and sunlight is an appealing approach. Nevertheless, it remains challenging to scale despite encouraging demonstrations at low power input. Higher current densities require notable voltage input as ohmic losses and activation overpotentials become more significant, resulting in lower solar-to-CO conversion efficiencies. A concentrated photovoltaic cell is integrated into a custom-made heat managed photo-electrochemical device. The heat is transferred from the photovoltaic module to the zero-gap electrolyzer cell by the stream of anodic reactant and produce synergetic effects on both sides. With solar concentrations up to 450 suns (i.e., 450 kW m−2) applied for the first time to photo-electrochemical reduction of CO2, a partial current for CO production of 4 A is achieved. At optimal conditions, the solar-to-CO conversion efficiency reaches 17% while maintaining a current density of 150 mA cm−2 in the electrolyzer and a CO selectivity above 90%, representing an overall 19% solar-to-fuel conversion efficiency. This study represents a first demonstration of photo-electrochemical CO2 reduction under highly concentrated light, paving the way for resource efficient solar fuel production at high power input.

中文翻译:

在集中的阳光下 CO2 的光电化学转化实现了高反应速率和效率的结合

利用二氧化碳、水和阳光光电化学生产太阳能燃料是一种有吸引力的方法。尽管如此,尽管鼓励在低功率输入下进行演示,但扩展规模仍然具有挑战性。更高的电流密度需要显着的电压输入,因为欧姆损耗和激活过电位变得更加显着,导致太阳能到 CO 的转换效率降低。将聚光光伏电池集成到定制的热管理光电化学装置中。热量通过阳极反应物流从光伏模块传递到零间隙电解槽,并在两侧产生协同效应。太阳浓度高达 450 个太阳(即 450 kW m -2),首次应用于 CO 2的光电化学还原,实现了用于产生 4 A 的 CO 的部分电流。在最佳条件下,太阳能到 CO 的转换效率达到 17%,同时保持电解槽中 150 mA cm -2的电流密度和高于 90% 的 CO 选择性,总的太阳能到燃料转换效率为 19%。该研究首次展示了在高度集中的光下进行光电化学 CO 2还原,为在高功率输入下生产资源高效的太阳能燃料铺平了道路。
更新日期:2022-06-15
down
wechat
bug