当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual carbon regulated yolk-shell ZnSe microsphere anode materials towards high performance potassium ion batteries
Electrochimica Acta ( IF 5.5 ) Pub Date : 2022-06-14 , DOI: 10.1016/j.electacta.2022.140717
Lin Gao , Guohao Chen , Lulu Zhang , Xuelin Yang

ZnSe is considered to be an intriguing anode material arising from its high theoretical capacity and low cost in potassium ion batteries (PIBs). The poor reaction kinetics and unfavorable structural stability, however, largely impede the performance. Herein, a dual carbon manipulated yolk-shell ZnSe microsphere (ZnSe-C@NC) is rationally envisaged, with ideal construction stability and efficient K+ diffusion process. A high discharge capacity of 549.9 mAh g−1 with favorable initial Coulombic efficiency of 81.8% can be achieved at 100 mA g−1. Even at the current density of 1000 mA g−1, the reversible capacity is as high as 456.4 mAh g−1. Concurrently, a full PIB based on ZnSe-C@NC is designed with a high energy density of 133.8 Wh kg−1 at the power density of 236 W kg−1. The experiment and in-depth density functional theory (DFT) calculation results demonstrate that the N doped carbon decoration on ZnSe would greatly accelerate charge transportation, narrow the bandgap and minimize K+ movement energy barrier. On the other hand, the dual carbon protection endow that the unique yolk-shell construction with superb mechanical stability during long circulation, bringing about exceptional electrochemical performance.



中文翻译:

用于高性能钾离子电池的双碳调控蛋黄壳硒化锌微球负极材料

ZnSe 被认为是一种有趣的负极材料,因为它在钾离子电池 (PIB) 中具有高理论容量和低成本。然而,较差的反应动力学和不利的结构稳定性在很大程度上阻碍了性能。在此,合理设想了一种双碳操纵的蛋黄壳ZnSe微球(ZnSe-C@NC),具有理想的结构稳定性和高效的K +扩散过程。在100 mA g -1下可以实现549.9 mAh g -1的高放电容量和81.8%的良好初始库仑效率。即使在1000 mA g -1的电流密度下,可逆容量也高达456.4 mAh g -1. 同时,基于 ZnSe-C@NC 的全 PIB 设计具有 133.8 Wh kg -1的高能量密度和 236 W kg -1的功率密度。实验和深度密度泛函理论(DFT)计算结果表明,ZnSe上的N掺杂碳装饰将大大加速电荷传输,缩小带隙并最小化K +运动能垒。另一方面,双重碳保护赋予独特的蛋黄壳结构在长时间循环期间具有出色的机械稳定性,带来卓越的电化学性能。

更新日期:2022-06-15
down
wechat
bug