当前位置: X-MOL 学术Br. J. Math. Stat. Psychol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A flexible approach to modelling over-, under- and equidispersed count data in IRT: The Two-Parameter Conway–Maxwell–Poisson Model
British Journal of Mathematical and Statistical Psychology ( IF 1.5 ) Pub Date : 2022-06-09 , DOI: 10.1111/bmsp.12273
Marie Beisemann 1
Affiliation  

Several psychometric tests and self-reports generate count data (e.g., divergent thinking tasks). The most prominent count data item response theory model, the Rasch Poisson Counts Model (RPCM), is limited in applicability by two restrictive assumptions: equal item discriminations and equidispersion (conditional mean equal to conditional variance). Violations of these assumptions lead to impaired reliability and standard error estimates. Previous work generalized the RPCM but maintained some limitations. The two-parameter Poisson counts model allows for varying discriminations but retains the equidispersion assumption. The Conway–Maxwell–Poisson Counts Model allows for modelling over- and underdispersion (conditional mean less than and greater than conditional variance, respectively) but still assumes constant discriminations. The present work introduces the Two-Parameter Conway–Maxwell–Poisson (2PCMP) model which generalizes these three models to allow for varying discriminations and dispersions within one model, helping to better accommodate data from count data tests and self-reports. A marginal maximum likelihood method based on the EM algorithm is derived. An implementation of the 2PCMP model in R and C++ is provided. Two simulation studies examine the model's statistical properties and compare the 2PCMP model to established models. Data from divergent thinking tasks are reanalysed with the 2PCMP model to illustrate the model's flexibility and ability to test assumptions of special cases.

中文翻译:

在 IRT 中对过度、不足和等分散计数数据进行建模的灵活方法:双参数康威-麦克斯韦-泊松模型

一些心理测试和自我报告会生成计数数据(例如,发散思维任务)。最突出的计数数据项响应理论模型 Rasch Poisson 计数模型 (RPCM) 在适用性方面受到两个限制性假设的限制:相等的项目区分和等分散(条件均值等于条件方差)。违反这些假设会导致可靠性和标准误差估计受损。以前的工作概括了 RPCM,但仍然存在一些局限性。两参数泊松计数模型允许不同的区分,但保留了等分散假设。Conway–Maxwell–Poisson 计数模型允许对过度离散和欠离散(条件均值分别小于和大于条件方差)进行建模,但仍假设持续区分。目前的工作介绍了双参数康威-麦克斯韦-泊松 (2PCMP) 模型,该模型概括了这三个模型,以允许在一个模型内进行不同的区分和分散,有助于更好地适应来自计数数据测试和自我报告的数据。推导了一种基于EM算法的边际最大似然法。提供了 R 和 C++ 中 2PCMP 模型的实现。两项模拟研究检查了模型的统计特性,并将 2PCMP 模型与已建立的模型进行了比较。使用 2PCMP 模型重新分析来自发散思维任务的数据,以说明模型的灵活性和测试特殊情况假设的能力。帮助更好地容纳来自计数数据测试和自我报告的数据。推导了一种基于EM算法的边际最大似然法。提供了 R 和 C++ 中 2PCMP 模型的实现。两项模拟研究检查了模型的统计特性,并将 2PCMP 模型与已建立的模型进行了比较。使用 2PCMP 模型重新分析来自发散思维任务的数据,以说明模型的灵活性和测试特殊情况假设的能力。帮助更好地容纳来自计数数据测试和自我报告的数据。推导了一种基于EM算法的边际最大似然法。提供了 R 和 C++ 中 2PCMP 模型的实现。两项模拟研究检查了模型的统计特性,并将 2PCMP 模型与已建立的模型进行了比较。使用 2PCMP 模型重新分析来自发散思维任务的数据,以说明模型的灵活性和测试特殊情况假设的能力。
更新日期:2022-06-09
down
wechat
bug