当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2022-06-13 , DOI: 10.1039/d2qi00695b
Mingyue Gao 1 , Yanchun Xue 1 , Yutang Zhang 1 , Chengxing Zhu 1 , Haiwei Yu 1 , Xingmei Guo 1 , Shasha Sun 1 , Shenglin Xiong 2 , Qinghong Kong 3 , Junhao Zhang 1
Affiliation  

The reasonable design of electrode materials is crucial for tuning the electrochemical performances of advanced energy storage systems. Co–Ni–Se nanosheets uniformly growing on a butterfly-wing-derived carbon framework (Co–Ni–Se/BWCF) with strong anchoring are devised and prepared by a microwave treatment–ion exchange–chemical etching–hydrothermal selenization technique. Benefiting from its multi-components and unique structure, Co–Ni–Se/BWCF-160 exhibits excellent supercapacitor and sodium storage performances as self-supporting electrodes. When Co–Ni–Se/BWCF-160 is used as a supercapacitor electrode, its capacity is as high as 3050 F g−1 at 1.0 A g−1 and maintained 1006 F g−1 at 20.0 A g−1. The asymmetric supercapacitor based on Co–Ni–Se/BWCF-160 and a-BWC achieved a high energy density of 49.7 W h kg−1 at 1052 W kg−1, and the capacity retention reaches 93.3% at 10 A g−1 after 5000 cycles. Evaluated as a sodium ion battery self-supporting anode, the initial discharge specific capacity is up to 703 mA h g−1 at 0.1 A g−1, and retains 403 mA h g−1 after 100 cycles. More importantly, it still achieves 211 mA h g−1 at 1.0 A g−1. The overall outstanding electrochemical performances can be explained in that the Co–Ni–Se nanosheets expose more active sites, and the ordered hole arrays ensure sufficient wetting between the electrolyte and electrode materials. Additionally, this unique structure enables more efficient ion/electron transfer and diffusion between the BWCF and Ni–Co–Se, effectively accelerating the electrochemical reaction kinetics.

中文翻译:

在 3D 碳框架上生长 Co-Ni-Se 纳米片作为超级电容器和钠离子电池的先进双功能电极

电极材料的合理设计对于调整先进储能系统的电化学性能至关重要。通过微波处理-离子交换-化学蚀刻-水热硒化技术,设计并制备了在蝴蝶翼衍生碳骨架(Co-Ni-Se/BWCF)上均匀生长并具有强锚定作用的Co-Ni-Se纳米片。得益于其多组分和独特的结构,Co-Ni-Se/BWCF-160 作为自支撑电极表现出优异的超级电容器和钠存储性能。当 Co-Ni-Se/BWCF-160 用作超级电容器电极时,其容量在 1.0 A g -1时高达 3050 F g -1 ,在 20.0 A g -1时保持 1006 F g -1. 基于 Co-Ni-Se/BWCF-160 和 a-BWC 的非对称超级电容器在 1052 W kg -1下实现了 49.7 W h kg -1的高能量密度,在 10 A g -1下容量保持率达到 93.3% 5000 次循环后。作为钠离子电池自支撑负极,在0.1 A g -1下的初始放电比容量高达703 mA hg -1,100次循环后仍保持403 mA hg -1 。更重要的是,它在 1.0 A g -1时仍能达到 211 mA hg -1. 整体优异的电化学性能可以解释为 Co-Ni-Se 纳米片暴露出更多的活性位点,有序的孔阵列确保了电解质和电极材料之间的充分润湿。此外,这种独特的结构使 BWCF 和 Ni-Co-Se 之间的离子/电子转移和扩散更加有效,有效地加速了电化学反应动力学。
更新日期:2022-06-13
down
wechat
bug