当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic Actuation Enables Programmable Lithium Metal Engineering
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2022-06-11 , DOI: 10.1002/aenm.202200999
Wangyan Wu 1 , Zhenyou Song 1 , Yiming Dai 1 , Xueying Zheng 1 , Guangyu Chai 1 , Jingbi Yang 1 , Wei Luo 1
Affiliation  

Lithium metal anodes may allow the energy density limit of rechargeable lithium batteries to be pushed higher. However, simple and efficient processing technologies for thin Li metal are lacking, which has significantly limited its applications. Herein, the feasibility of engineering Li metal by compositing it with ferromagnetic particles (termed magnetic Li, abbr. M-Li) is reported. Due to its magnetic response, straightforward processing of M-Li on diverse substrates with customized patterns and desired thickness is realized. Moreover, when a garnet-type solid-state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) is the substrate, intimate contact between M-Li and LLZTO is obtained, with a low interfacial resistance of ≈11 Ω cm2. In addition to facilitating movement and wetting on various substrates, magnetic transfer of M-Li sheets to designated locations is also enabled. The intriguing and brand-new method for Li metal engineering via magnetic actuation may be adopted by the industrial system for the fabrication of Li metal batteries, extended to other alkali metals and promises further progress.

中文翻译:

磁驱动实现可编程锂金属工程

锂金属阳极可能会提高可充电锂电池的能量密度极限。然而,缺乏简单高效的薄锂金属加工技术,极大地限制了其应用。本文报道了通过将金属锂与铁磁颗粒(称为磁性锂,缩写为 M-Li)复合来设计锂金属的可行性。由于其磁响应,实现了在具有定制图案和所需厚度的各种基板上直接处理 M-Li。此外,当石榴石型固态电解质 Li 6.5 La 3 Zr 1.5 Ta 0.5 O 12(LLZTO)是衬底,M-Li和LLZTO之间获得了紧密的接触,具有≈11 Ω cm 2的低界面电阻。除了促进各种基板上的移动和润湿外,还可以将 M-Li 片材磁性转移到指定位置。通过磁驱动进行锂金属工程的有趣和全新的方法可能会被工业系统采用来制造锂金属电池,并扩展到其他碱金属,并有望取得进一步的进展。
更新日期:2022-06-11
down
wechat
bug