当前位置: X-MOL 学术J. Mater. Chem. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Understanding the electrochemical reaction mechanisms of precious metals Au and Ru as cathode catalysts in Li–CO2 batteries
Journal of Materials Chemistry A ( IF 10.7 ) Pub Date : 2022-06-10 , DOI: 10.1039/d2ta02495k
Jian Hu 1, 2 , Chao Yang 1 , Kunkun Guo 1
Affiliation  

The electrochemical reaction mechanisms of Au and Ru as cathode catalysts in Li–CO2 batteries are firstly studied by first-principles density functional theory (DFT) calculations. During the discharge process, the free energy changes of different intermediates during the nucleation processes of lithium oxalate (Li2C2O4) and lithium carbonate (Li2CO3) are systematically investigated, showing that on both Au and Ru surfaces, Li2C2O4 nucleations are kinetically favorable for the discharge intermediate product. However, Li2CO3 nucleations are thermodynamically favorable for the final discharge product, and Li2C2O4 cannot be stabilized as the final product anymore and has to decompose into Li2CO3 as the final discharge product. During the charging process, the Li2CO3 decomposition mechanism is also studied on both Au and Ru surfaces, showing that the discharge products of Li2CO3 and carbon can be much more reversibly decomposed on the Ru catalyst than on the Au surface. The electrochemical free energy diagrams are also introduced to identify the overpotentials compared with the experimental results. A series of electrochemical reaction pathways proposed here can effectively evaluate the catalytic activity of the catalysts toward the discharging and charging processes, thereby providing more insights into the design and optimization cathode catalysts for Li–CO2 batteries.

中文翻译:

了解贵金属 Au 和 Ru 作为 Li-CO2 电池正极催化剂的电化学反应机理

首次通过第一性原理密度泛函理论(DFT)计算研究了Au和Ru作为Li-CO 2电池正极催化剂的电化学反应机理。在放电过程中,系统研究了草酸锂(Li 2 C 2 O 4)和碳酸锂(Li 2 CO 3 )成核过程中不同中间体的自由能变化,表明在Au和Ru表面,Li 2 C 2 O 4成核在动力学上对放电中间产物是有利的。然而,Li 2 CO 3成核在热力学上对最终放电产物是有利的,并且Li 2 C 2 O 4不再作为最终产物稳定并且必须分解成Li 2 CO 3作为最终放电产物。在充电过程中,还研究了 Au 和 Ru 表面上的 Li 2 CO 3分解机理,表明 Li 2 CO 3的放电产物并且碳在Ru催化剂上比在Au表面上更可逆地分解。还引入了电化学自由能图以识别与实验结果相比的过电位。这里提出的一系列电化学反应途径可以有效地评估催化剂对放电和充电过程的催化活性,从而为Li-CO 2电池正极催化剂的设计和优化提供更多见解。
更新日期:2022-06-10
down
wechat
bug