当前位置: X-MOL 学术Macromolecules › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Correction to “Understanding the Roles of Mesh Size, Tg, and Segmental Dynamics on Probe Diffusion in Dense Polymer Networks”
Macromolecules ( IF 5.5 ) Pub Date : 2022-06-09 , DOI: 10.1021/acs.macromol.2c00997
Grant S. Sheridan , Christopher M. Evans

In our original article, the fluorescent dye N,N′-bis(2,5-di-tert-butylphenyl)-3,4,9,10-perylenedicarboximide (BTBP) was introduced into butyl acrylate polymer networks with various cross-link densities to understand how the mesh size affects mass transport and the dye diffusion coefficient. However, the dimensions of BTBP were incorrectly calculated in the original article when converting from the van der Waals volume to the radii of an ellipsoid. The prior long and short axes where reported as dlong = 1.79 and dshort = 0.51 nm. The correct values are 2.58 and 0.74 nm, which impacts the values dlong/ax, where ax is the mesh size determined from dynamic mechanical analysis. This error impacts the cartoon in Figure 1 showing the BTBP dimensions. Also impacted are Figures 6 and 8, where the x-axis has been corrected with the accurate dye size. The networks are in a more confined regime than previously reported. The change in size did not affect any trends observed, but the values of the slopes (activation energies) were impacted by the change in dye dimensions. Corrected versions of Figures 1, 6, and 8 are shown below. Figure 1. (A) Butyl acrylate network synthesis via FRP with a diacrylate, including the dye BTBP axis lengths. (1) (B) Synthesized network FTIR compared to n-butyl acrylate showing high conversion due to the carbon–carbon double bond band disappearance. Figure 6. Single exponential decay dependence of BTBP diffusion coefficients as a function of long and short axis size ratios with decreasing dependence at higher experimental temperatures. Penetration energies are included in the inset. Figure 8. (A) Single exponential relationship between size ratio and α-relaxation times with decreasing dependence at higher experimental temperatures. (B) Inverse diffusion coefficients showing weaker single exponential dependence on the size ratio than (A). Three in-text mentions of numerical values were also incorrect based on the dye size. On line 306, the ratio dlong/ax = 1.9. In line 314, the ratio of short axis to mesh size does not exceed 0.8. Finally, the activation energies calculated on line 377 should be 7.6–8.7 kJ/mol. The change in probe dimensions also affects the calculated dlong/ax values in Table S3. Corrected values are shown below. This article references 1 other publications. This article has not yet been cited by other publications. Figure 1. (A) Butyl acrylate network synthesis via FRP with a diacrylate, including the dye BTBP axis lengths. (1) (B) Synthesized network FTIR compared to n-butyl acrylate showing high conversion due to the carbon–carbon double bond band disappearance. Figure 6. Single exponential decay dependence of BTBP diffusion coefficients as a function of long and short axis size ratios with decreasing dependence at higher experimental temperatures. Penetration energies are included in the inset. Figure 8. (A) Single exponential relationship between size ratio and α-relaxation times with decreasing dependence at higher experimental temperatures. (B) Inverse diffusion coefficients showing weaker single exponential dependence on the size ratio than (A). This article references 1 other publications.

中文翻译:

更正“了解网格尺寸、Tg 和分段动力学对密集聚合物网络中探针扩散的作用”

在我们的原始文章中,荧光染料N , N'-双(2,5-二叔丁基苯基)-3,4,9,10-苝二甲酰亚胺 (BTBP) 被引入具有各种交联的丙烯酸丁酯聚合物网络中密度以了解网格尺寸如何影响质量传输和染料扩散系数。但是,在将范德华体积转换为椭球半径时,原始文章中的 BTBP 尺寸计算错误。先前的长轴和短轴报告为d long = 1.79 和d short = 0.51 nm。正确的值为 2.58 和 0.74 nm,这会影响值d long / a x,其中a x是根据动态力学分析确定的网格尺寸。此错误会影响图 1 中显示 BTBP 尺寸的卡通。图 6 和图 8 也受到影响,其中x轴已使用准确的染料尺寸进行了校正。这些网络处于比先前报道的更加受限的状态。尺寸的变化不影响观察到的任何趋势,但斜率(活化能)的值受到染料尺寸变化的影响。图 1、6 和 8 的修正版本如下所示。图 1. (A) 通过 FRP 与二丙烯酸酯合成丙烯酸丁酯网络,包括染料 BTBP 轴长度。(1) (B) 与n相比的综合网络 FTIR-丙烯酸丁酯由于碳-碳双键带消失而显示出高转化率。图 6. BTBP 扩散系数的单指数衰减依赖性作为长轴和短轴尺寸比的函数,在较高的实验温度下依赖性降低。插入能量包含在插图中。图 8. (A) 尺寸比和 α-弛豫时间之间的单指数关系,在较高的实验温度下依赖性降低。(B) 逆扩散系数显示出比 (A) 对尺寸比的单指数依赖性更弱。根据染料大小,三个文本中提到的数值也是不正确的。在第 306 行,比率d long / a x= 1.9。在第 314 行中,短轴与网格尺寸之比不超过 0.8。最后,第 377 行计算的活化能应为 7.6–8.7 kJ/mol。探针尺寸的变化也会影响表 S3 中计算的d long / a x值。修正值如下所示。本文参考了 1 篇其他出版物。这篇文章尚未被其他出版物引用。图 1. (A) 通过 FRP 与二丙烯酸酯合成丙烯酸丁酯网络,包括染料 BTBP 轴长度。(1) (B) 与n相比的综合网络 FTIR-丙烯酸丁酯由于碳-碳双键带消失而显示出高转化率。图 6. BTBP 扩散系数的单指数衰减依赖性作为长轴和短轴尺寸比的函数,在较高的实验温度下依赖性降低。插入能量包含在插图中。图 8. (A) 尺寸比和 α-弛豫时间之间的单指数关系,在较高的实验温度下依赖性降低。(B) 逆扩散系数显示出比 (A) 对尺寸比的单指数依赖性更弱。本文参考了 1 篇其他出版物。
更新日期:2022-06-09
down
wechat
bug