当前位置: X-MOL 学术Geochim. Cosmochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synchronous solid-state diffusion, dissolution-reprecipitation, and recrystallization leading to isotopic resetting: insights from chalcopyrite replacement by copper sulfides
Geochimica et Cosmochimica Acta ( IF 4.5 ) Pub Date : 2022-06-08 , DOI: 10.1016/j.gca.2022.06.005
Alok Chaudhari , Joël Brugger , Rahul Ram , Priyadarshi Chowdhury , Barbara Etschmann , Paul Guaguliardo , Fang Xia , Allan Pring , Gediminas Gervinskas , Amelia Liu , Andrew Frierdich

Reactions among minerals occur via solid-state diffusion or fluid-induced, interface-coupled dissolution-reprecipitation (ICDR). Both mechanisms can coexist under conditions where the rates of both processes are similar, depending mainly on the nature of the mineral, temperature, and fluid composition. To clarify the synergies between these reaction mechanisms, we investigated the replacement and recrystallization reactions of chalcopyrite in the presence of a 65Cu-enriched aqueous fluid. The replacement of chalcopyrite by secondary copper sulfides follows a paragenetic sequence, whereby chalcopyrite is initially replaced by covellite, and then by digenite, with some of the digenite replacing covellite in longer duration experiments. The replacement reactions proceed via ICDR along with solid-state diffusion of 65Cu from the fluid into product minerals, with both mechanisms occurring at similar rates. Over time, chalcopyrite is completely replaced, and the secondary copper sulfides attain isotopic equilibrium with the fluid. Depending on temperature, thermal history, and fluid-mineral ratio, the reaction products may preserve kinetic or equilibrium signatures. We have identified a new geochemical process of ‘porosity-aided recrystallization’, which may result in a re-equilibration or perturbation of mineral isotopic/trace element compositions due to exchanges between the mineral and fluid facilitated by extensive micro- to nano-scale porosity created by ICDR reactions. Porosity-aided recrystallization will affect any mineral-fluid system where mass transfers via solid-state diffusion and ICDR operate at similar rates, causing rapid (days-weeks) ‘resetting’ of the original isotopic abundances and trace element contents of the affected minerals. In copper sulfides, porosity-aided recrystallization occurs at lower temperatures (<300 °C) due to fast cation diffusion rates (log10D ≈ –13.6, 300 °C), but also takes place across other mineral systems where diffusion rates are faster at high temperatures. The open-system isotopic and trace element exchanges associated with porosity-aided recrystallization could lead to erroneous petrological interpretations, especially where these markers are used as a proxy for reconstructing geological evolution.



中文翻译:

同步固态扩散、溶解-再沉淀和重结晶导致同位素重置:硫化铜替代黄铜矿的见解

矿物之间的反应通过固态扩散或流体诱导的界面耦合溶解再沉淀(ICDR) 发生。这两种机制可以在两种过程的速率相似的条件下共存,主要取决于矿物的性质、温度和流体成分。为了阐明这些反应机制之间的协同作用,我们研究了在65存在下黄铜矿的置换和重结晶反应。富铜的水性流体。黄铜矿被次生硫化铜取代遵循共生序列,即黄铜矿最初被铜蓝矿取代,然后被闪锌矿取代,在较长时间的实验中,一些闪铜矿取代了铜蓝矿。置换反应通过 ICDR 进行,同时65 Cu 从流体固态扩散到产品矿物中,这两种机制以相似的速率发生。随着时间的推移,黄铜矿被完全取代,次生硫化铜与流体达到同位素平衡。根据温度、热历史和流体-矿物比,反应产物可以保持动力学或平衡特征。我们已经确定了一个新的'孔隙辅助再结晶地球化学过程',这可能导致矿物同位素/微量元素组成的重新平衡或扰动,这是由于 ICDR 反应产生的广泛的微米至纳米级孔隙促进了矿物和流体之间的交换。孔隙度辅助重结晶将影响任何通过固态扩散和 ICDR 以相似速率进行质量转移的矿物流体系统,导致受影响矿物的原始同位素丰度和微量元素含量快速(数天至数周)“重置”。在硫化铜中,由于阳离子扩散速率快(log 10D ≈ –13.6, 300 °C),但也发生在其他高温下扩散速率更快的矿物系统中。与孔隙度辅助重结晶相关的开放系统同位素和微量元素交换可能导致错误的岩石学解释,尤其是在这些标记被用作重建地质演化的代理的情况下。

更新日期:2022-06-08
down
wechat
bug