当前位置: X-MOL 学术J. Med. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multitarget, Selective Compound Design Yields Potent Inhibitors of a Kinetoplastid Pteridine Reductase 1
Journal of Medicinal Chemistry ( IF 6.8 ) Pub Date : 2022-06-08 , DOI: 10.1021/acs.jmedchem.2c00232
Ina Pöhner 1, 2 , Antonio Quotadamo 3, 4 , Joanna Panecka-Hofman 1, 5 , Rosaria Luciani 6 , Matteo Santucci 6 , Pasquale Linciano 6 , Giacomo Landi 7 , Flavio Di Pisa 7 , Lucia Dello Iacono 7 , Cecilia Pozzi 7 , Stefano Mangani 7 , Sheraz Gul 8 , Gesa Witt 8 , Bernhard Ellinger 8 , Maria Kuzikov 8 , Nuno Santarem 9 , Anabela Cordeiro-da-Silva 9, 10 , Maria P Costi 6 , Alberto Venturelli 3, 6 , Rebecca C Wade 1, 2, 11, 12
Affiliation  

The optimization of compounds with multiple targets is a difficult multidimensional problem in the drug discovery cycle. Here, we present a systematic, multidisciplinary approach to the development of selective antiparasitic compounds. Computational fragment-based design of novel pteridine derivatives along with iterations of crystallographic structure determination allowed for the derivation of a structure–activity relationship for multitarget inhibition. The approach yielded compounds showing apparent picomolar inhibition of T. brucei pteridine reductase 1 (PTR1), nanomolar inhibition of L. major PTR1, and selective submicromolar inhibition of parasite dihydrofolate reductase (DHFR) versus human DHFR. Moreover, by combining design for polypharmacology with a property-based on-parasite optimization, we found three compounds that exhibited micromolar EC50 values against T. brucei brucei while retaining their target inhibition. Our results provide a basis for the further development of pteridine-based compounds, and we expect our multitarget approach to be generally applicable to the design and optimization of anti-infective agents.

中文翻译:

多靶点、选择性化合物设计产生有效的动质体蝶啶还原酶 1 抑制剂

具有多个目标的化合物的优化是药物发现周期中一个困难的多维问题。在这里,我们提出了一种系统的、多学科的方法来开发选择性抗寄生虫化合物。新型蝶啶衍生物的基于计算片段的设计以及晶体结构确定的迭代允许推导多靶点抑制的结构-活性关系。该方法产生的化合物显示出对布氏蝶啶还原酶 1 (PTR1) 的明显皮摩尔抑制,对L. major的纳摩尔抑制PTR1,以及对寄生虫二氢叶酸还原酶 (DHFR) 与人类 DHFR 的选择性亚微摩尔抑制。此外,通过将多药理学设计与基于特性的寄生虫优化相结合,我们发现三种化合物对布氏布氏锥虫表现出微摩尔 EC 50值,同时保持其目标抑制作用。我们的结果为进一步开发基于蝶啶的化合物提供了基础,我们希望我们的多靶点方法普遍适用于抗感染药物的设计和优化。
更新日期:2022-06-08
down
wechat
bug