当前位置: X-MOL 学术J. Comput. Des. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Significance of Lorentz forces on Jeffrey nanofluid flows over a convectively heated flat surface featured by multiple velocity slips and dual stretching constraint: a homotopy analysis approach
Journal of Computational Design and Engineering ( IF 4.8 ) Pub Date : 2022-03-21 , DOI: 10.1093/jcde/qwac019
Abdullah Dawar,Abderrahim Wakif,Anwar Saeed,Zahir Shah,Taseer Muhammad,Poom Kumam

Abstract Motivated by the temporal relaxation feature of the Jeffrey model and its practical uses in the rheological modeling of several vital liquids, this study aimed to present a theoretical analysis of three-dimensional MHD Jeffrey nanofluid flows over a dual stretching surface with velocity slip conditions. By adopting the nonhomogeneous nanofluid model along with the passive control approach of nanoparticles, the current flow problem is solved semi-analytically via the homotopy analysis method for convective heating and multiple slip conditions. Dynamically, the magnetic and viscoelastic parameters have a declining effect on the velocity distributions in both directions in the existence and absence of slip effects, while the Deborah number has generally an escalating influence on the flow distributions. On the other hand, the variations of the velocity profiles in both directions are always greater in the presence of slip effect as compared to the nonslip case. Besides, the velocity stretching factor rises the velocity profiles in both directions. Furthermore, this increasing impact is dominant for the velocity distribution along the $y{\rm{-}}$direction as compared to the velocity field along the $x{\rm{-}}$direction. Thermally, the greater Biot number increases the temperature distribution. However, the bigger Schmidt number reduces the concentration distribution.

中文翻译:

洛伦兹力对杰弗里纳米流体在对流加热的平面上流动的意义,该平面具有多速度滑移和双拉伸约束:一种同伦分析方法

摘要 受 Jeffrey 模型的时间松弛特性及其在几种重要液体的流变建模中的实际应用的启发,本研究旨在对具有速度滑移条件的双拉伸表面上的三维 MHD Jeffrey 纳米流体流动进行理论分析。采用非均匀纳米流体模型和纳米粒子的被动控制方法,通过对流加热和多滑移条件的同伦分析方法半解析求解电流流动问题。在动态上,磁和粘弹性参数在存在和不存在滑移效应的情况下对两个方向的速度分布具有递减的影响,而德博拉数对流动分布的影响通常是递增的。另一方面,与无滑移情况相比,存在滑移效应时,两个方向上的速度分布变化总是更大。此外,速度拉伸因子提高了两个方向的速度分布。此外,与沿 $x{\rm{-}}$ 方向的速度场相比,这种增加的影响对于沿 $y{\rm{-}}$ 方向的速度分布占主导地位。在热学上,较大的 Biot 数会增加温度分布。然而,较大的施密特数会降低浓度分布。与沿 $x{\rm{-}}$ 方向的速度场相比,这种增加的影响对于沿 $y{\rm{-}}$ 方向的速度分布占主导地位。在热学上,较大的 Biot 数会增加温度分布。然而,较大的施密特数会降低浓度分布。与沿 $x{\rm{-}}$ 方向的速度场相比,这种增加的影响对于沿 $y{\rm{-}}$ 方向的速度分布占主导地位。在热学上,较大的 Biot 数会增加温度分布。然而,较大的施密特数会降低浓度分布。
更新日期:2022-03-21
down
wechat
bug