当前位置: X-MOL 学术IEEE Trans. Cybern. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Trajectory Tracking Control of Pneumatic Servo System: A Variable Gain ADRC Approach
IEEE Transactions on Cybernetics ( IF 9.4 ) Pub Date : 6-6-2022 , DOI: 10.1109/tcyb.2022.3174613
Jinhui Zhang 1 , Congfeng Cui 1 , Shaomeng Gu 1 , Tao Wang 1 , Ling Zhao 2
Affiliation  

In this article, a novel error-driven variable gain active disturbance rejection control (ADRC) approach is developed for pneumatic servo system, and the desired performance of trajectory tracking and the disturbance rejection can be guaranteed. The proposed variable gain ADRC includes three parts: 1) variable gain tracking differentiator (TD); 2) variable gain extended state observer (ESO); and 3) variable gain error feedback controller (EFC). The proposed variable gain TD is noise tolerant and possesses a variable gain, which can be dynamically adjusted according to the tracking error, and the performance for tracking the reference signal and extracting its derivative is improved. The variable gain ESO is also equipped with a variable gain driven by estimation errors to improve the estimation performance. Then, the variable gain EFC is further designed to improve control accuracy. Finally, simulations and experimental results are presented to verify the efficiency of the proposed methods.

中文翻译:


气动伺服系统的轨迹跟踪控制:一种可变增益自抗扰控制方法



本文为气动伺服系统开发了一种新颖的误差驱动可变增益自抗扰控制(ADRC)方法,可以保证所需的轨迹跟踪和抗扰性能。所提出的可变增益ADRC包括三个部分:1)可变增益跟踪微分器(TD); 2)可变增益扩展状态观测器(ESO); 3)可变增益误差反馈控制器(EFC)。所提出的可变增益TD是耐噪声的并且具有可变增益,其可以根据跟踪误差动态调整,并且改善了跟踪参考信号和提取其导数的性能。可变增益ESO还配备了由估计误差驱动的可变增益,以提高估计性能。然后,进一步设计了可变增益EFC以提高控制精度。最后,给出了仿真和实验结果来验证所提出方法的效率。
更新日期:2024-08-26
down
wechat
bug