当前位置: X-MOL 学术Inorg. Chem. Front. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cyanamide-defect-induced built-in electric field in crystalline carbon nitride for enhanced visible to near-infrared light photocatalytic activity
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2022-06-07 , DOI: 10.1039/d2qi00715k
Jinyu Zhu 1 , Guoqiang Zhang 1 , Yangsen Xu 2 , Wei Huang 1 , Chuanxin He 1 , Peixin Zhang 1 , Hongwei Mi 1
Affiliation  

Carbon nitride materials have achieved great accomplishments in solar-to-hydrogen energy conversion under visible light. However, the weak kinetics and rapid recombination of the photogenerated charge carriers result in low photocatalytic efficiency, which hinders its practical utilization. Herein, terminal cyanamide groups were grafted on K+-inserted crystalline carbon nitride (KCCN-cya) via a potassium-salt (KSCN and KOCN)-assisted one-step crystallization process. The cyanamide groups, which have high electron accepting ability, contribute to the formation of a built-in electric field (BIEF). The enhanced charge separation and dislocation was verified through linear sweep voltammetry (LSV) and electron paramagnetic resonance (EPR). Kelvin probe force microscopy (KPFM) measurements revealed the increased fluctuations of localized potential, which induced the formation of a BIEF in KCCN-cya. Moreover, the HOMO and LUMO distribution obtained for KCCN-cya using DFT computations was more highly separated than that of KCCN materials, indicating the dislocation of generated electron–hole pairs and the effective BIEF construction after the implantation of electron-withdrawing cyano terminals. As a result, the constructed BIEF promoted the separation of photogenerated electrons and holes in KCCN-cya samples, which thus exhibited an approximately three-fold improvement in hydrogen evolution activity under visible light. This finding demonstrated that introducing an electron-withdrawing group (i.e., –C[triple bond, length as m-dash]N) into an organic photocatalyst would be a promising way to improve photocatalytic activity and solar energy conversion.

中文翻译:

氰胺缺陷诱导的结晶氮化碳内建电场增强可见光至近红外光的光催化活性

氮化碳材料在可见光下的太阳能-氢能转换方面取得了巨大成就。然而,光生载流子的弱动力学和快速复合导致光催化效率低,阻碍了其实际应用。在此,末端单氰胺基团通过以下方式接枝到插入 K +的结晶氮化碳 (KCCN-cya)一种钾盐(KSCN 和 KOCN)辅助的一步结晶过程。具有高电子接受能力的氰胺基有助于形成内建电场(BIEF)。通过线性扫描伏安法 (LSV) 和电子顺磁共振 (EPR) 验证了增强的电荷分离和位错。开尔文探针力显微镜 (KPFM) 测量显示局部电位波动增加,这导致 KCCN-cya 中形成 BIEF。此外,使用 DFT 计算得到的 KCCN-cya 的 HOMO 和 LUMO 分布比 KCCN 材料的分离度更高,表明产生的电子-空穴对的位错和在注入吸电子氰基末端后有效的 BIEF 结构。因此,构建的BIEF促进了KCCN-cya样品中光生电子和空穴的分离,因此在可见光下的析氢活性提高了约三倍。这一发现表明,引入吸电子基团(,-C [三键,长度为 m-dash]N) 转化为有机光催化剂将是提高光催化活性和太阳能转换的有前途的方法。
更新日期:2022-06-07
down
wechat
bug