当前位置: X-MOL 学术Earth Syst. Sci. Data › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reconstructed daily ground-level O3 in China over 2005–2021 for climatological, ecological, and health research
Earth System Science Data ( IF 11.2 ) Pub Date : 2022-06-07 , DOI: 10.5194/essd-2022-187
Chenhong Zhou , Fan Wang , Yike Guo , Cheng Liu , Dongsheng Ji , Yuesi Wang , Xiaobin Xu , Xiao Lu , Yan Wang , Gregory Carmichael , Meng Gao

Abstract. Accompanied by the continuous declines of PM2.5, O3 pollution has become increasingly prominent and has been targeted by the Government of China to protect climate, ecosystem, and human health. Although satellite retrievals of column O3 have been operated for decades and nationwide monitoring of ground-level O3 has been offered since 2013 in China, climatological variability of ground-level O3 remains unknown, which impedes understanding of the long-term driver and impacts of O3 pollution in China. Here we develop an eXtreme Gradient Boosting (XGBoost) model integrating high-resolution meteorological data, satellite retrievals of trace gases, etc. to provide reconstructed daily ground-level O3 over 2005–2021 in China. Model validation confirms the robustness of this dataset, with R2 of 0.89 for sample-based cross-validation. The accuracy of the long-term variations has also been confirmed with independent historical observations covering the same period from urban, rural and background sites. Our dataset covers the long time period of 2005–2021 with 0.1°×0.1° gap-free grids, which can facilitate climatological, ecological, and health research. The dataset is freely available at Zenodo (https://zenodo.org/record/6507706#.Yo8hKujP13g; Zhou, 2022).
更新日期:2022-06-07
down
wechat
bug