当前位置: X-MOL 学术Chem. Eng. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Magnetic Array for Efficient and Stable Flow-electrode Capacitive Deionization
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2022-06-06 , DOI: 10.1016/j.cej.2022.137415
Longqian Xu , Liang Tang , Shuai Peng , Yunfeng Mao , Deli Wu

Magnetic flow-electrode capacitive deionization (FCDI) is a promising desalination technology; however, it still faces the risk of material stability and flow channel clogging during continuous operation. In this study, a new magnetic array design was introduced in the FCDI system to achieve efficient and stable desalination. Pairs of magnets were uniformly placed on the surface of the end plates along the flow channel to create alternating magnetic and magnetic field-free zones. Core-shell magnetic carbon (MC) was used as the conductive additive to guide the flow electrodes towards the magnet sides, thus creating a high concentration electrode area on the surface of the current collectors. When the flow electrode entered the magnetic field-free zones, the concentrated flow electrode returned to a homogeneous state. The results demonstrated that the desalination rate of FCDI with a low carbon content (1.0-2.0 wt%) increased by more than 120% after the application of a magnetic field. In the magnetic array, the working surface of the current collector significantly increased due to the aggregation effect of MC particles, which improved the electron transfer efficient and shortened the ion transport distance. In addition, the operational stability of FCDI in the magnetic field array was also demonstrated in a long-term operation. When the cell voltage was 1.2 V, the average salt removal rate (ASRR) and charge efficiency of FCDI were maintained at 0.35 μmol cm–2·min–1 and >95%, respectively. In summary, magnetic array design offers the potential for FCDI to break through the trade-off between desalination performance and pumping energy consumption.



中文翻译:

用于高效稳定流动电极电容去离子的磁阵列

磁流电极电容去离子(FCDI)是一种很有前途的海水淡化技术;但在连续运行过程中仍面临物料稳定性和流道堵塞的风险。在这项研究中,在 FCDI 系统中引入了一种新的磁阵列设计,以实现高效稳定的海水淡化。沿流动通道将成对的磁铁均匀地放置在端板的表面上,以产生交替的磁场和无磁场区。使用核壳磁性碳 (MC) 作为导电添加剂,将流动电极引导向磁铁侧,从而在集电器表面形成高浓度电极区域。当流动电极进入无磁场区时,集中流动电极回到均匀状态。结果表明,低碳含量(1.0-2.0 wt%)的FCDI在施加磁场后脱盐率提高了120%以上。在磁性阵列中,由于MC粒子的聚集作用,集流体的工作面显着增大,提高了电子转移效率,缩短了离子传输距离。此外,FCDI在磁场阵列中的运行稳定性也在长期运行中得到证明。当电池电压为1.2 V时,FCDI的平均除盐率(ASRR)和充电效率保持在0.35 μmol cm 由于MC颗粒的聚集作用,集流体的工作表面显着增加,提高了电子转移效率,缩短了离子传输距离。此外,FCDI在磁场阵列中的运行稳定性也在长期运行中得到证明。当电池电压为1.2 V时,FCDI的平均除盐率(ASRR)和充电效率保持在0.35 μmol cm 由于MC颗粒的聚集作用,集流体的工作表面显着增加,提高了电子转移效率,缩短了离子传输距离。此外,FCDI在磁场阵列中的运行稳定性也在长期运行中得到证明。当电池电压为1.2 V时,FCDI的平均除盐率(ASRR)和充电效率保持在0.35 μmol cm–2 ·min –1和 >95%,分别。总之,磁阵列设计为 FCDI 提供了突破海水淡化性能和泵送能耗之间权衡的潜力。

更新日期:2022-06-06
down
wechat
bug