当前位置: X-MOL 学术npj Comput. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Data-driven analysis of process, structure, and properties of additively manufactured Inconel 718 thin walls
npj Computational Materials ( IF 9.4 ) Pub Date : 2022-06-06 , DOI: 10.1038/s41524-022-00808-5
Lichao Fang , Lin Cheng , Jennifer A. Glerum , Jennifer Bennett , Jian Cao , Gregory J. Wagner

In additive manufacturing of metal parts, the ability to accurately predict the extremely variable temperature field in detail, and relate it quantitatively to structure and properties, is a key step in predicting part performance and optimizing process design. In this work, a finite element simulation of the directed energy deposition (DED) process is used to predict the space- and time-dependent temperature field during the multi-layer build process for Inconel 718 walls. The thermal model results show good agreement with dynamic infrared images captured in situ during the DED builds. The relationship between predicted cooling rate, microstructural features, and mechanical properties is examined, and cooling rate alone is found to be insufficient in giving quantitative property predictions. Because machine learning offers an efficient way to identify important features from series data, we apply a 1D convolutional neural network data-driven framework to automatically extract the dominant predictive features from simulated temperature history. Very good predictions of material properties, especially ultimate tensile strength, are obtained using simulated thermal history data. To further interpret the convolutional neural network predictions, we visualize the extracted features produced on each convolutional layer and compare the convolutional neural network detected features of thermal histories for high and low ultimate tensile strength cases. A key result is the determination that thermal histories in both high and moderate temperature regimes affect material properties.



中文翻译:

对增材制造的 Inconel 718 薄壁的工艺、结构和性能进行数据驱动分析

在金属零件的增材制造中,能够准确预测极端变化的温度场,并将其与结构和性能进行定量关联,是预测零件性能和优化工艺设计的关键步骤。在这项工作中,定向能量沉积 (DED) 过程的有限元模拟用于预测 Inconel 718 壁的多层构建过程中与空间和时间相关的温度场。热模型结果与 DED 构建期间原位捕获的动态红外图像具有良好的一致性。检查了预测的冷却速率、微观结构特征和机械性能之间的关系,发现仅冷却速率不足以给出定量的性能预测。因为机器学习提供了一种从系列数据中识别重要特征的有效方法,我们应用一维卷积神经网络数据驱动框架从模拟温度历史中自动提取主要预测特征。使用模拟的热历史数据可以很好地预测材料特性,尤其是极限抗拉强度。为了进一步解释卷积神经网络的预测,我们可视化每个卷积层上产生的提取特征,并比较卷积神经网络检测到的高和低极限抗拉强度情况下的热历史特征。一个关键结果是确定高温和中等温度状态下的热历史会影响材料性能。我们应用一维卷积神经网络数据驱动框架从模拟温度历史中自动提取主要预测特征。使用模拟的热历史数据可以很好地预测材料特性,尤其是极限抗拉强度。为了进一步解释卷积神经网络的预测,我们可视化每个卷积层上产生的提取特征,并比较卷积神经网络检测到的高和低极限抗拉强度情况下的热历史特征。一个关键结果是确定高温和中等温度状态下的热历史会影响材料性能。我们应用一维卷积神经网络数据驱动框架从模拟温度历史中自动提取主要预测特征。使用模拟的热历史数据可以很好地预测材料特性,尤其是极限抗拉强度。为了进一步解释卷积神经网络的预测,我们可视化每个卷积层上产生的提取特征,并比较卷积神经网络检测到的高和低极限抗拉强度情况下的热历史特征。一个关键结果是确定高温和中等温度状态下的热历史会影响材料性能。使用模拟的热历史数据可以很好地预测材料特性,尤其是极限抗拉强度。为了进一步解释卷积神经网络的预测,我们可视化每个卷积层上产生的提取特征,并比较卷积神经网络检测到的高和低极限抗拉强度情况下的热历史特征。一个关键结果是确定高温和中等温度状态下的热历史会影响材料性能。使用模拟的热历史数据可以很好地预测材料特性,尤其是极限抗拉强度。为了进一步解释卷积神经网络的预测,我们可视化每个卷积层上产生的提取特征,并比较卷积神经网络检测到的高和低极限抗拉强度情况下的热历史特征。一个关键结果是确定高温和中等温度状态下的热历史会影响材料性能。我们可视化每个卷积层上产生的提取特征,并比较卷积神经网络在高和低极限抗拉强度情况下检测到的热历史特征。一个关键结果是确定高温和中等温度状态下的热历史会影响材料性能。我们可视化每个卷积层上产生的提取特征,并比较卷积神经网络在高和低极限抗拉强度情况下检测到的热历史特征。一个关键结果是确定高温和中等温度状态下的热历史会影响材料性能。

更新日期:2022-06-06
down
wechat
bug