当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A pixelated frequency-agile metasurface for broadband terahertz molecular fingerprint sensing
Nanoscale ( IF 6.7 ) Pub Date : 2022-06-03 , DOI: 10.1039/d2nr01561g
Lang Sun 1 , Lei Xu 2 , Jiayi Wang 3 , Yanan Jiao 4 , Zenghong Ma 5 , Zhaofu Ma 4 , Chao Chang 1, 6 , Xiao Yang 1 , Ride Wang 1
Affiliation  

Terahertz (THz) plasmonic resonance based on an arbitrarily designed resonance metasurface is the key technique of choice for enhancing fingerprint absorption spectroscopy identification of biomolecules. Here, we report a broadband THz micro-photonics sensor based on a pixelated frequency-agile metasurface and illustrate its application ability to enhance and differentiate the detection of broadband absorption fingerprint spectra. The design uses symmetrical metal C-shape resonators with the functional graphene micro-ribbons selectively patterned into the gaps. A strong electric resonance with a high quality factor was formed, consisting of an electric dipole mode associated with the excitation of a dark toroidal dipole (TD) mode through the coupling from the electric dipole moment of the individual frequency-agile meta-unit. The resonance positions are nearly linearly modulated with the varying Fermi level of graphene. The configuration arranges a certain metapixel of the metasurface to multiple response spectra assembling a one-to-many mapping between spatial and spectral information which is instrumental in greatly shrinking the actual size of the sensor. By the synchronous regulation of graphene and C-shape rings, we have obtained highly surface-sensitive resonances over a wide spectral range (∼1.5 THz) with a spectral resolution less than 20 GHz. The target multiple enhanced absorption spectrum of glucose molecules is read out in a broadband region with high sensitivity. More importantly, the design can be extended to cover a larger spectral region by altering the range of geometrical parameters. Our microphotonic technique can resolve absorption fingerprints without the need for spectrometry and frequency scanning, thereby providing an approach for highly sensitive and versatile miniaturized THz spectroscopy devices.

中文翻译:

用于宽带太赫兹分子指纹传感的像素化频率捷变超表面

基于任意设计的共振超表面的太赫兹 (THz) 等离子体共振是增强生物分子指纹吸收光谱识别的关键技术。在这里,我们报告了一种基于像素化频率捷变超表面的宽带太赫兹微光子传感器,并说明了其在增强和区分宽带吸收指纹光谱检测方面的应用能力。该设计使用对称金属 C 形谐振器,功能性石墨烯微带选择性地图案化到间隙中。形成了具有高品质因数的强电共振,包括与通过单个频率捷变元单元的电偶极矩耦合而激发暗环形偶极 (TD) 模式相关的电偶极模式。共振位置几乎随着石墨烯费米能级的变化而线性调制。该配置将超表面的某个元像素安排到多个响应光谱,组装空间和光谱信息之间的一对多映射,这有助于大大缩小传感器的实际尺寸。通过石墨烯和 C 形环的同步调节,我们在宽光谱范围(~1.5 THz)上获得了高度表面敏感的共振,光谱分辨率小于 20 GHz。在宽带区域以高灵敏度读出葡萄糖分子的目标多重增强吸收光谱。更重要的是,可以通过改变几何参数的范围来扩展设计以覆盖更大的光谱区域。
更新日期:2022-06-03
down
wechat
bug