当前位置: X-MOL 学术Nat. Rev. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering the multiscale complexity of vascular networks
Nature Reviews Materials ( IF 83.5 ) Pub Date : 2022-05-31 , DOI: 10.1038/s41578-022-00447-8
Colleen O'Connor 1, 2 , Eileen Brady 2, 3 , Ying Zheng 1, 2, 4 , Erika Moore 5 , Kelly R Stevens 1, 2, 4, 6, 7
Affiliation  

The survival of vertebrate organisms depends on highly regulated delivery of oxygen and nutrients through vascular networks that pervade nearly all tissues in the body. Dysregulation of these vascular networks is implicated in many common human diseases such as hypertension, coronary artery disease, diabetes and cancer. Therefore, engineers have sought to create vascular networks within engineered tissues for applications such as regenerative therapies, human disease modelling and pharmacological testing. Yet engineering vascular networks has historically remained difficult, owing to both incomplete understanding of vascular structure and technical limitations for vascular fabrication. This Review highlights the materials advances that have enabled transformative progress in vascular engineering by ushering in new tools for both visualizing and building vasculature. New methods such as bioprinting, organoids and microfluidic systems are discussed, which have enabled the fabrication of 3D vascular topologies at a cellular scale with lumen perfusion. These approaches to vascular engineering are categorized into technology-driven and nature-driven approaches. Finally, the remaining knowledge gaps, emerging frontiers and opportunities for this field are highlighted, including the steps required to replicate the multiscale complexity of vascular networks found in nature.



中文翻译:

设计血管网络的多尺度复杂性

脊椎动物生物的生存依赖于通过遍布全身几乎所有组织的血管网络高度调节地输送氧气和营养物质。这些血管网络的失调与许多常见的人类疾病有关,例如高血压、冠状动脉疾病、糖尿病和癌症。因此,工程师们寻求在工程组织内创建血管网络,用于再生疗法、人类疾病建模和药理学测试等应用。然而,由于对血管结构的不完全理解和血管制造的技术限制,工程血管网络在历史上仍然很困难。本综述通过引入用于可视化和构建脉管系统的新工具,重点介绍了促进血管工程变革性进展的材料进步。讨论了诸如生物打印、类器官和微流体系统等新方法,这些方法使得能够在细胞尺度上制造具有管腔灌注的 3D 血管拓扑结构。这些血管工程方法分为技术驱动方法和自然驱动方法。最后,强调了该领域的剩余知识差距、新兴前沿和机遇,包括复制自然界中发现的血管网络的多尺度复杂性所需的步骤。这使得能够在具有管腔灌注的细胞尺度上制造 3D 血管拓扑结构。这些血管工程方法分为技术驱动方法和自然驱动方法。最后,强调了该领域的剩余知识差距、新兴前沿和机遇,包括复制自然界中发现的血管网络的多尺度复杂性所需的步骤。这使得能够在具有管腔灌注的细胞尺度上制造 3D 血管拓扑结构。这些血管工程方法分为技术驱动方法和自然驱动方法。最后,强调了该领域的剩余知识差距、新兴前沿和机遇,包括复制自然界中发现的血管网络的多尺度复杂性所需的步骤。

更新日期:2022-06-01
down
wechat
bug