当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flexible Terahertz Photonic Light-Cage Modules for In-Core Sensing and High Temperature Applications
ACS Photonics ( IF 6.5 ) Pub Date : 2022-06-01 , DOI: 10.1021/acsphotonics.2c00386
Alessio Stefani 1 , Boris T. Kuhlmey 1 , Justin Digweed 2 , Benjamin Davies 3 , Zizhen Ding 3, 4 , Hala Zreiqat 3, 5 , Mohammad Mirkhalaf 3, 4, 5 , Alessandro Tuniz 1, 2
Affiliation  

Terahertz technology is a growing and multidisciplinary research field, particularly in applications relating to sensing and telecommunications. A number of terahertz waveguides have emerged over the past few years, which are set to complement the capabilities of existing and bulky free-space setups. In most terahertz waveguide designs, however, the guiding region is physically separated from the surroundings, making any interaction between the guided light and the environment inefficient. Here, we present photonic terahertz light cages (THzLCs) operating at terahertz frequencies, consisting of free-standing dielectric strands, which guide light within a central hollow core with immediate access to the environment. We experimentally show the versatility and design flexibility of this concept by 3D-printing several cm-length-scale modules on the basis of a single design, using four different polymer and ceramic materials, which are either rigid, flexible, or resistant to high temperatures. We characterize both propagation and bend losses for straight and curved waveguides, which, in the range 0.25–0.7 THz, are of order ∼1 dB/cm in the former and ∼2–8 dB/cm in the latter for bend radii below 10 cm and are largely independent of the chosen material. Our transmission experiments are complemented by near-field measurements at the waveguide output, which reveal the antiresonant guidance for straight THzLCs and a deformed fundamental mode in the bent waveguides, in agreement with numerical conformal mapping simulation models. We show that these THzLCs can be used as (i) flexible, reconfigurable, and bendable modular assemblies; (ii) in-core sensors of resonant structures contained directly inside the hollow core; or (iii) high-temperature waveguide sensors, with potential applications in industrial monitoring and sensing. Finally, we introduce and discuss appropriate figures of merit for quantifying the performance of light cage guidance with respect to free-space propagation. The 3D-printed light cages presented are a novel and useful addition to the growing library of terahertz waveguides, marrying the waveguidelike advantages of reconfigurable, diffractionless propagation with the free-space-like immediacy of direct exposure to the surrounding environment.

中文翻译:

用于核内传感和高温应用的灵活太赫兹光子光笼模块

太赫兹技术是一个不断发展的多学科研究领域,特别是在与传感和电信相关的应用领域。过去几年出现了许多太赫兹波导,它们旨在补充现有和庞大的自由空间装置的能力。然而,在大多数太赫兹波导设计中,引导区域与周围环境物理分离,使得引导光与环境之间的任何交互都效率低下。在这里,我们展示了在太赫兹频率下工作的光子太赫兹光笼 (THzLC),它由独立的电介质股线组成,可在中央空心芯内引导光,并立即进入环境。我们通过在单一设计的基础上使用四种不同的聚合物和陶瓷材料(刚性、柔性或耐高温)3D 打印几个厘米长度的模块,通过实验展示了这一概念的多功能性和设计灵活性. 我们描述了直波导和弯曲波导的传播和弯曲损耗,在 0.25-0.7 THz 范围内,对于 10 以下的弯曲半径,前者约为 1 dB/cm,后者约为 2-8 dB/cm cm 并且在很大程度上独立于所选材料。我们的传输实验通过波导输出的近场测量得到补充,揭示了直太赫兹液晶的反谐振引导和弯曲波导中的变形基模,与数值共形映射模拟模型一致。我们证明这些 THzLC 可以用作 (i) 灵活、可重构和可弯曲的模块化组件;(ii) 包含共振结构的核心传感器直接在中空芯内;(iii) 高温波导传感器,在工业监测和传感方面具有潜在应用。最后,我们介绍并讨论了用于量化光笼制导在自由空间传播方面的性能的适当品质因数。所展示的 3D 打印光笼是不断增长的太赫兹波导库的一种新颖且有用的补充,将可重构、无衍射传播的类似波导的优势与直接暴露于周围环境的类似自由空间的即时性结合在一起。
更新日期:2022-06-01
down
wechat
bug