当前位置: X-MOL 学术J. Chem. Inf. Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modified Hamiltonian in FEP Calculations for Reducing the Computational Cost of Electrostatic Interactions
Journal of Chemical Information and Modeling ( IF 5.6 ) Pub Date : 2022-05-31 , DOI: 10.1021/acs.jcim.1c01532
Hiraku Oshima 1 , Yuji Sugita 1, 2, 3
Affiliation  

The free-energy perturbation (FEP) method predicts relative and absolute free-energy changes of biomolecules in solvation and binding with other molecules. FEP is, therefore, one of the most essential tools in in silico drug design. In conventional FEP, to smoothly connect two thermodynamic states, the potential energy is modified as a linear combination of the end-state potential energies by introducing scaling factors. When the particle mesh Ewald is used for electrostatic calculations, conventional FEP requires two reciprocal-space calculations per time step, which largely decreases the computational performance. To overcome this problem, we propose a new FEP scheme by introducing a modified Hamiltonian instead of interpolation of the end-state potential energies. The scheme introduces nonuniform scaling into the electrostatic potential as used in Replica Exchange with Solute Tempering 2 (REST2) and does not require additional reciprocal-space calculations. We tested this modified Hamiltonian in FEP calculations in several biomolecular systems. In all cases, the calculated free-energy changes with the current scheme are in good agreement with those from conventional FEP. The modified Hamiltonian in FEP greatly improves the computational performance, which is particularly marked for large biomolecular systems whose reciprocal-space calculations are the major bottleneck of total computational time.

中文翻译:

改进 FEP 计算中的哈密顿量以降低静电相互作用的计算成本

自由能扰动 (FEP) 方法预测生物分子在溶剂化和与其他分子结合中的相对和绝对自由能变化。因此,FEP 是计算机药物设计中最重要的工具之一。在传统的 FEP 中,为了平滑连接两个热力学状态,通过引入比例因子将势能修改为终态势能的线性组合。当使用粒子网格 Ewald 进行静电计算时,传统的 FEP 需要在每个时间步进行两次倒易空间计算,这大大降低了计算性能。为了克服这个问题,我们提出了一种新的 FEP 方案,通过引入改进的哈密顿量而不是最终状态势能的插值。该方案在具有溶质回火 2 (REST2) 的副本交换中使用的静电势中引入了非均匀缩放,并且不需要额外的倒数空间计算。我们在几个生物分子系统中的 FEP 计算中测试了这种改进的哈密顿量。在所有情况下,使用当前方案计算的自由能变化与传统 FEP 的自由能变化非常一致。FEP 中改进的哈密顿量极大地提高了计算性能,这对于倒易空间计算是总计算时间的主要瓶颈的大型生物分子系统尤其显着。在所有情况下,使用当前方案计算的自由能变化与传统 FEP 的自由能变化非常一致。FEP 中改进的哈密顿量极大地提高了计算性能,这对于倒易空间计算是总计算时间的主要瓶颈的大型生物分子系统尤其显着。在所有情况下,使用当前方案计算的自由能变化与传统 FEP 的自由能变化非常一致。FEP 中改进的哈密顿量极大地提高了计算性能,这对于倒易空间计算是总计算时间的主要瓶颈的大型生物分子系统尤其显着。
更新日期:2022-05-31
down
wechat
bug