当前位置: X-MOL 学术Nat. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A wavelength-induced frequency filtering method for fluorescent nanosensors in vivo
Nature Nanotechnology ( IF 38.1 ) Pub Date : 2022-05-30 , DOI: 10.1038/s41565-022-01136-x
Volodymyr B Koman 1 , Naveed A Bakh 1 , Xiaojia Jin 1 , Freddy T Nguyen 1, 2, 3 , Manki Son 1 , Daichi Kozawa 1, 4 , Michael A Lee 1 , Gili Bisker 5 , Juyao Dong 1 , Michael S Strano 1
Affiliation  

Fluorescent nanosensors hold the potential to revolutionize life sciences and medicine. However, their adaptation and translation into the in vivo environment is fundamentally hampered by unfavourable tissue scattering and intrinsic autofluorescence. Here we develop wavelength-induced frequency filtering (WIFF) whereby the fluorescence excitation wavelength is modulated across the absorption peak of a nanosensor, allowing the emission signal to be separated from the autofluorescence background, increasing the desired signal relative to noise, and internally referencing it to protect against artefacts. Using highly scattering phantom tissues, an SKH1-E mouse model and other complex tissue types, we show that WIFF improves the nanosensor signal-to-noise ratio across the visible and near-infrared spectra up to 52-fold. This improvement enables the ability to track fluorescent carbon nanotube sensor responses to riboflavin, ascorbic acid, hydrogen peroxide and a chemotherapeutic drug metabolite for depths up to 5.5 ± 0.1 cm when excited at 730 nm and emitting between 1,100 and 1,300 nm, even allowing the monitoring of riboflavin diffusion in thick tissue. As an application, nanosensors aided by WIFF detect the chemotherapeutic activity of temozolomide transcranially at 2.4 ± 0.1 cm through the porcine brain without the use of fibre optic or cranial window insertion. The ability of nanosensors to monitor previously inaccessible in vivo environments will be important for life-sciences research, therapeutics and medical diagnostics.



中文翻译:

一种用于体内荧光纳米传感器的波长诱导频率滤波方法

荧光纳米传感器具有彻底改变生命科学和医学的潜力。然而,它们在体内环境中的适应和转化从根本上受到不利的组织散射和固有自发荧光的阻碍。在这里,我们开发了波长诱导频率滤波 (WIFF),由此荧光激发波长在纳米传感器的吸收峰上进行调制,使发射信号与自发荧光背景分离,相对于噪声增加所需信号,并在内部参考它以防止人工制品。使用高度散射的幻影组织、SKH1-E 小鼠模型和其他复杂的组织类型,我们表明 WIFF 将可见光和近红外光谱的纳米传感器信噪比提高了 52 倍。这种改进能够跟踪荧光碳纳米管传感器对核黄素、抗坏血酸、过氧化氢和化疗药物代谢物的反应,当在 730 nm 激发并在 1,100 和 1,300 nm 之间发射时,深度可达 5.5 ± 0.1 cm,甚至允许监测核黄素在厚组织中的扩散。作为一项应用,在 WIFF 的帮助下,纳米传感器通过猪脑在 2.4 ± 0.1 cm 处经颅检测替莫唑胺的化疗活性,而无需使用光纤或颅窗插入。纳米传感器监测以前无法进入的体内环境的能力对于生命科学研究、治疗和医学诊断非常重要。当在 730 nm 激发并在 1,100 和 1,300 nm 之间发射时,过氧化氢和化疗药物代谢物的深度可达 5.5 ± 0.1 cm,甚至可以监测厚组织中的核黄素扩散。作为一项应用,在 WIFF 的帮助下,纳米传感器通过猪脑在 2.4 ± 0.1 cm 处经颅检测替莫唑胺的化疗活性,而无需使用光纤或颅窗插入。纳米传感器监测以前无法进入的体内环境的能力对于生命科学研究、治疗和医学诊断非常重要。当在 730 nm 激发并在 1,100 和 1,300 nm 之间发射时,过氧化氢和化疗药物代谢物的深度可达 5.5 ± 0.1 cm,甚至可以监测厚组织中的核黄素扩散。作为一项应用,在 WIFF 的帮助下,纳米传感器通过猪脑在 2.4 ± 0.1 cm 处经颅检测替莫唑胺的化疗活性,而无需使用光纤或颅窗插入。纳米传感器监测以前无法进入的体内环境的能力对于生命科学研究、治疗和医学诊断非常重要。在 WIFF 的帮助下,纳米传感器通过猪脑在 2.4 ± 0.1 厘米处经颅检测替莫唑胺的化疗活性,无需使用光纤或颅窗插入。纳米传感器监测以前无法进入的体内环境的能力对于生命科学研究、治疗和医学诊断非常重要。在 WIFF 的帮助下,纳米传感器通过猪脑在 2.4 ± 0.1 厘米处经颅检测替莫唑胺的化疗活性,无需使用光纤或颅窗插入。纳米传感器监测以前无法进入的体内环境的能力对于生命科学研究、治疗和医学诊断非常重要。

更新日期:2022-05-31
down
wechat
bug