当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Data-driven concurrent nanostructure optimization based on conditional generative adversarial networks
Nanophotonics ( IF 7.5 ) Pub Date : 2022-05-12 , DOI: 10.1515/nanoph-2022-0005
Arthur Baucour 1 , Myungjoon Kim 1 , Jonghwa Shin 1
Affiliation  

Iterative numerical optimization is a ubiquitous tool to design optical nanostructures. However, there can be a significant performance gap between the numerically simulated results, with pristine shapes, and the experimentally measured values, with deformed profiles. We introduce conditional generative adversarial networks (CGAN) into the standard iterative optimization loop to learn process-structure relationships and produce realistic simulation designs based on the fabrication conditions. This ensures that the process-structure mapping is accurate for the specific available equipment and moves the optimization space from the structural parameters (e.g. width, height, and period) to process parameters (e.g. deposition rate and annealing time). We demonstrate this model agnostic optimization platform on the design of a red, green, and blue color filter based on metallic gratings. The generative network can learn complex M-to-N nonlinear process-structure relations, thereby generating simulation profiles similar to the training data over a wide range of fabrication conditions. The CGAN-based optimization resulted in fabrication parameters leading to a realistic design with a higher figure of merit than a standard optimization using pristine structures. This data-driven approach can expedite the design process both by limiting the design search space to a fabrication-accurate subspace and by returning the optimal process parameters automatically upon obtaining the optimal structure design.

中文翻译:

基于条件生成对抗网络的数据驱动并发纳米结构优化

迭代数值优化是设计光学纳米结构的普遍工具。然而,具有原始形状的数值模拟结果与具有变形轮廓的实验测量值之间可能存在显着的性能差距。我们将条件生成对抗网络 (CGAN) 引入标准迭代优化循环中,以学习过程-结构关系并根据制造条件生成逼真的模拟设计。这确保了特定可用设备的工艺结构映射是准确的,并将优化空间从结构参数(例如宽度、高度和周期)移动到工艺参数(例如沉积速率和退火时间)。我们在红色、绿色、和基于金属光栅的蓝色滤光片。生成网络可以学习复杂的 M 到 N 非线性过程-结构关系,从而在各种制造条件下生成类似于训练数据的模拟配置文件。与使用原始结构的标准优化相比,基于 CGAN 的优化产生的制造参数导致具有更高品质因数的现实设计。这种数据驱动的方法可以通过将设计搜索空间限制为制造精确的子空间以及在获得最佳结构设计后自动返回最佳工艺参数来加快设计过程。从而在广泛的制造条件下生成类似于训练数据的模拟配置文件。与使用原始结构的标准优化相比,基于 CGAN 的优化产生的制造参数导致具有更高品质因数的现实设计。这种数据驱动的方法可以通过将设计搜索空间限制为制造精确的子空间以及在获得最佳结构设计后自动返回最佳工艺参数来加快设计过程。从而在广泛的制造条件下生成类似于训练数据的模拟配置文件。与使用原始结构的标准优化相比,基于 CGAN 的优化产生的制造参数导致具有更高品质因数的现实设计。这种数据驱动的方法可以通过将设计搜索空间限制为制造精确的子空间以及在获得最佳结构设计后自动返回最佳工艺参数来加快设计过程。
更新日期:2022-05-12
down
wechat
bug