当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ultra-dense plasmonic nanogap arrays for reorientable molecular fluorescence enhancement and spectrum reshaping
Nanoscale ( IF 5.8 ) Pub Date : 2022-05-30 , DOI: 10.1039/d2nr01543a
Jiawei Wang 1, 2, 3 , Qi Hao 2, 4, 5 , Haiyun Dong 2 , Minshen Zhu 2, 3 , Lan Wu 1 , Lixiang Liu 3 , Wenxing Wang 6 , Oliver G Schmidt 3 , Libo Ma 2
Affiliation  

Understanding interactions between molecular transition and intense electromagnetic fields confined by plasmon nanostructures is of great significance due to their huge potential in fundamental cavity quantum electrodynamics and practical applications. Here, we report reorientable plasmon-enhanced fluorescence leveraging the flexibilities in densely-packed gold nanogap arrays by template-assisted depositions. By finely adjusting the symmetry of the unit structure, arrays of nanogaps along two nearly-orthogonal axes can be tailored collectively with spacing down to sub-10 nm on a single chip, facilitating distinct “inter-cell” and “intra-cell” plasmon couplings. Through engineering two sets of nanogaps, the varying hybridization-induced plasmonic bonding modes lead to adjustable splitting of the fluorescence emission peak with a width up to 81 nm and narrowing of linewidths up to a factor of 3. Besides, polarization anisotropy with a ratio up to 63% is obtained on the basis of spectrally separated local hotspots with discrepant oscillation directions. The developed plasmonic nanogap array is envisaged to provide a promising chip-scale, cost-effective platform for advancing fluorescence-based detection and emission technologies in both classical and quantum regimes.

中文翻译:

用于可重定向分子荧光增强和光谱重塑的超致密等离子体纳米间隙阵列

由于等离激元纳米结构在基本腔量子电动力学和实际应用中的巨大潜力,了解分子跃迁与强电磁场之间的相互作用具有重要意义。在这里,我们报告了通过模板辅助沉积利用密集堆积的金纳米间隙阵列中的灵活性的可重定向等离子体增强荧光。通过微调单元结构的对称性,沿着两个近乎正交的轴的纳米间隙阵列可以在单个芯片上以小于 10 nm 的间距共同定制,促进不同的“细胞间”和“细胞内”等离子体激元联轴器。通过设计两组纳米间隙,不同的杂交诱导等离子体键合模式导致荧光发射峰的可调分裂,宽度高达 81 nm,线宽变窄达 3 倍。此外,在 上获得了比率高达 63% 的偏振各向异性具有不同振荡方向的光谱分离局部热点的基础。设想开发的等离子纳米间隙阵列提供一个有前途的芯片级、具有成本效益的平台,用于在经典和量子体系中推进基于荧光的检测和发射技术。
更新日期:2022-05-30
down
wechat
bug