当前位置: X-MOL 学术Biotechnol. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery
Biotechnology Advances ( IF 16.0 ) Pub Date : 2022-05-30 , DOI: 10.1016/j.biotechadv.2022.107991
Yan Zhang 1 , Jacob Nedergaard Pedersen 1 , Bekir Engin Eser 1 , Zheng Guo 1
Affiliation  

The global production of plastics has continuously been soaring over the last decades due to their extensive use in our daily life and in industries. Although synthetic plastics offer great advantages from packaging to construction and electronics, their low biodegradability induce serious plastic pollution that damage the environment, human health and make irreversible changes in the ecological cycle. In particular, plastics containing only carbon-carbon (C-C) backbone are less susceptible to degradation due to the lack of hydrolysable groups. The representative polyethylene (PE) and polystyrene (PS) account for about 40% of the total plastic production. Various chemical and biological processes with great potential have been developed for plastic recycle and reuse, but biodegradation seems to be the most attractive and eco-friendly method to combat this growing environmental problem. In this review, we first summarize the current advances in PE and PS biodegradation, including isolation of microbes and potential degrading enzymes from different sources. Next, the state-of-the-art techniques used for evaluating and monitoring PE and PS degradation, the scientific toolboxes for enzyme discovery as well as the challenges and strategies for plastic biodegradation are intensively discussed. In return, it inspires a further technological exploration in expanding the diversity of species and enzymes, disclosing the essential pathways and developing new approaches to utilize plastic waste as feedstock for recycling and upcycling.



中文翻译:

聚乙烯和聚苯乙烯的生物降解:从微生物退化到酶发现

由于塑料在我们的日常生活和工业中的广泛使用,全球塑料的产量在过去几十年中不断飙升。尽管合成塑料在包装、建筑和电子产品等方面具有巨大优势,但其低生物降解性会导致严重的塑料污染,破坏环境、人类健康,并对生态循环造成不可逆转的变化。特别是,仅含有碳-碳 (CC) 主链的塑料由于缺乏可水解基团而不易降解。具有代表性的聚乙烯(PE)和聚苯乙烯(PS)约占塑料总产量的40%。各种具有巨大潜力的化学和生物工艺已被开发用于塑料回收和再利用,但生物降解似乎是应对这一日益严重的环境问题的最有吸引力和最环保的方法。在这篇综述中,我们首先总结了 PE 和 PS 生物降解的当前进展,包括从不同来源分离微生物和潜在的降解酶。接下来,对用于评估和监测 PE 和 PS 降解的最新技术、酶发现的科学工具箱以及塑料生物降解的挑战和策略进行了深入讨论。作为回报,它激发了进一步的技术探索,以扩大物种和酶的多样性,揭示基本途径并开发利用塑料废物作为原料进行回收和升级再造的新方法。我们首先总结了 PE 和 PS 生物降解的当前进展,包括从不同来源分离微生物和潜在的降解酶。接下来,对用于评估和监测 PE 和 PS 降解的最新技术、酶发现的科学工具箱以及塑料生物降解的挑战和策略进行了深入讨论。作为回报,它激发了进一步的技术探索,以扩大物种和酶的多样性,揭示基本途径并开发利用塑料废物作为原料进行回收和升级再造的新方法。我们首先总结了 PE 和 PS 生物降解的当前进展,包括从不同来源分离微生物和潜在的降解酶。接下来,对用于评估和监测 PE 和 PS 降解的最新技术、酶发现的科学工具箱以及塑料生物降解的挑战和策略进行了深入讨论。作为回报,它激发了进一步的技术探索,以扩大物种和酶的多样性,揭示基本途径并开发利用塑料废物作为原料进行回收和升级再造的新方法。对酶发现的科学工具箱以及塑料生物降解的挑战和策略进行了深入讨论。作为回报,它激发了进一步的技术探索,以扩大物种和酶的多样性,揭示基本途径并开发利用塑料废物作为原料进行回收和升级再造的新方法。对酶发现的科学工具箱以及塑料生物降解的挑战和策略进行了深入讨论。作为回报,它激发了进一步的技术探索,以扩大物种和酶的多样性,揭示基本途径并开发利用塑料废物作为原料进行回收和升级再造的新方法。

更新日期:2022-06-03
down
wechat
bug