当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In situ electronic redistribution tuning of ZnIn2S4 nanosheets on NiCo2S4 hollow tube for boosted photocatalytic hydrogen evolution
Applied Surface Science ( IF 6.3 ) Pub Date : 2022-05-28 , DOI: 10.1016/j.apsusc.2022.153801
Wei Li , Hongyu Ma , Zhifei Liu , Jiajun Li , Pengfei Fang , Rui Xiong , Chunxu Pan , Jianhong Wei

To overcome the serious drawbacks of fast charge recombination and the limited visible-light absorption of ZnIn2S4 semiconductor photocatalyst, herein, in situ growth of 2D ZnIn2S4 (ZIS) on the surface of NiCo2S4 (NCS) hollow tubes was designed and prepared through a multistep solvothermal means. The experimental results indicate that the ZIS@NCS composites possess large specific surface area and abundant photocatalytic active center due to the intimate interface contact between ZIS nanosheets and NCS hollow backbones, which are favorable for visible light absorption and the interfacial carrier transfer in photocatalytic reaction process. Density functional theory further proved the above insights. The dynamics of photo-induced electrons were extensively characterized. As a result, the optimal sample of ZIS@NCS-7 exhibited the highest hydrogen evolution rate of 1950 μmol h−1 g−1, which was 6.1 times that of pristine ZIS and much higher than the other photocatalysts under otherwise identical conditions. The apparent quantum efficiency of ZIS@NCS-7 composites reached 9.3% at 420 nm. This work provides a novel standpoint for the design and construction of more efficient photocatalyst with robust light absorption.



中文翻译:

NiCo2S4空心管上ZnIn2S4纳米片的原位电子再分布调谐以促进光催化析氢

为了克服快速电荷复合和 ZnIn 2 S 4半导体光催化剂对可见光吸收有限的严重缺陷,本文在 NiCo 2 S 4表面原位生长二维 ZnIn 2 S 4 (ZIS)(NCS) 空心管是通过多步溶剂热方法设计和制备的。实验结果表明,ZIS@NCS复合材料由于ZIS纳米片与NCS中空骨架之间的紧密界面接触,具有较大的比表面积和丰富的光催化活性中心,有利于光催化反应过程中可见光吸收和界面载流子转移。 . 密度泛函理论进一步证明了上述见解。光致电子的动力学得到了广泛的表征。结果,ZIS@NCS-7的最佳样品表现出最高的析氢速率,为1950 μmol h -1 g -1,是原始 ZIS 的 6.1 倍,并且在其他相同条件下远高于其他光催化剂。ZIS@NCS-7复合材料的表观量子效率在420 nm处达到9.3%。这项工作为设计和构建具有强大光吸收能力的更高效光催化剂提供了新的视角。

更新日期:2022-05-28
down
wechat
bug