当前位置: X-MOL 学术Hydrometallurgy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Reductive dissolution of jarosite by inorganic sulfur compounds catalyzed by Acidithiobacillus thiooxidans
Hydrometallurgy ( IF 4.8 ) Pub Date : 2022-05-28 , DOI: 10.1016/j.hydromet.2022.105908
Hong-Rui Chen , Duo-Rui Zhang , Zhen-Yuan Nie , Jin-Lan Xia , Qian Li , Rui-Yong Zhang , He-Hao Yin , Eva Pakostova

The adsorption of jarosite and the resulting passivation of mineral surfaces can negatively influence metal extraction from sulfidic ores as well as the fate of other elements in biohydrometallurgical processes. Some bioleaching microorganisms mediate dissimilatory iron reduction coupled to sulfur oxidation (DIRSO), a process utilized predominantly in continuously enhanced leaching of metals from sulfide and/or oxidized ores. In this study, the reductive dissolution of jarosite (biosynthesized by the iron-oxidizing archaeon Acidianus manzaensis) catalyzed by the mesophilic acidophilic bacterium Acidithiobacillus (At.) thiooxidans oxidizing different inorganic sulfur compounds was investigated. Kinetic measurements of pH, ORP, iron concentrations, and planktonic cell counts were performed to describe the reductive dissolution of jarosite. Moreover, the solid leaching residues were analyzed using X-ray absorption near edge structure (XANES), Inductively coupled plasma - optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. The dissolution rates of jarosite after 34 days of bioleaching by At. thiooxidans with S0, Na2S2O3, and Na2SO3 were 41.7, 76.3, and 98.4%, respectively, while negligible jarosite dissolution was detected in abiotic controls. The presence of Na2S2O3 and Na2SO3 resulted in structural modifications on the jarosite surfaces, but the dissolution of jarosite was not promoted in the absence of At. thiooxidans. In the biotic assays with Na2SO3, jarosite was completely dissolved, indicating that Na2SO3 was the most suitable electron donor (out of those tested) for DIRSO by At. thiooxidans. The findings obtained in this study can contribute to designing suitable bioleaching strategies for oxidized ores. They also highlight the potential of microbially catalyzed DIRSO to mitigate jarosite formation that often hinders bioleaching of sulfidic ores.



中文翻译:

氧化硫硫杆菌催化无机硫化合物还原溶解黄钾铁矾

黄钾铁矾的吸附和由此产生的矿物表面钝化会对硫化矿石中的金属提取以及生物湿法冶金过程中其他元素的命运产生负面影响。一些生物浸出微生物介导异化铁还原与硫氧化 (DIRSO) 耦合,该过程主要用于从硫化物和/或氧化矿石中连续增强金属浸出。在这项研究中,黄钾铁矾(由氧化铁古细菌Acidianus manzaensis生物合成)由嗜酸性细菌Acidithiobacillus ( At .) thiooxidans催化的还原溶解研究了氧化不同的无机硫化合物。进行 pH、ORP、铁浓度和浮游细胞计数的动力学测量以描述黄钾铁矾的还原溶解。此外,采用 X 射线吸收近边缘结构 (XANES)、电感耦合等离子体-光学发射光谱 (ICP-OES)、扫描电子显微镜 (SEM)、X 射线衍射 (XRD) 和拉曼分析固体浸出残留物。光谱学。At生物浸出 34 天后黄钾铁矾的溶解速率。含 S 0、Na 2 S 2 O 3和 Na 2 SO 3的氧化硫分别为 41.7、76.3 和 98.4%,而在非生物对照中检测到的黄钾铁矾溶解可忽略不计。Na 2 S 2 O 3和Na 2 SO 3的存在导致黄钾铁矾表面的结构改变,但在没有At的情况下没有促进黄钾铁矾的溶解。氧化硫。在使用 Na 2 SO 3的生物测定中,黄钾铁矾完全溶解,表明 Na 2 SO 3是 At 最适合 DIRSO 的电子供体(在测试的那些电子供体中)。氧化硫. 本研究中获得的发现有助于为氧化矿石设计合适的生物浸出策略。他们还强调了微生物催化的 DIRSO 在减轻黄钾铁矾形成方面的潜力,而黄钾铁矾的形成通常会阻碍硫化矿石的生物浸出。

更新日期:2022-05-28
down
wechat
bug