当前位置: X-MOL 学术Phys. Rev. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cooperative Intramolecular Dynamics Control the Chain-Length-Dependent Glass Transition in Polymers
Physical Review X ( IF 11.6 ) Pub Date : 2022-05-27 , DOI: 10.1103/physrevx.12.021047
Daniel L. Baker , Matthew Reynolds , Robin Masurel , Peter D. Olmsted , Johan Mattsson

The glass transition is a long-standing unsolved problem in materials science. For polymers, our understanding of glass formation is particularly poor because of the added complexity of chain connectivity and flexibility; structural relaxation of polymers thus involves a complex interplay between intramolecular and intermolecular cooperativity. Here, we study how the glass-transition temperature Tg varies with molecular weight M for different polymer chemistries and chain flexibilities. We find that Tg(M) is controlled by the average mass (or volume) per conformational degree of freedom and that a “local” molecular relaxation (involving a few conformers) controls the larger-scale cooperative α relaxation responsible for Tg. We propose that dynamic facilitation where a local relaxation facilitates adjacent relaxations, leading to hierarchical dynamics, can explain our observations, including logarithmic Tg(M) dependences. Our study provides a new understanding of molecular relaxations and the glass transition in polymers, which paves the way for predictive design of polymers based on monomer-scale metrics.

中文翻译:

协同分子内动力学控制聚合物中依赖于链长的玻璃化转变

玻璃化转变是材料科学中长期未解决的问题。对于聚合物,由于链连接性和柔韧性增加了复杂性,我们对玻璃形成的理解特别差;因此,聚合物的结构松弛涉及分子内和分子间协同性之间的复杂相互作用。在这里,我们研究玻璃化转变温度如何G随分子量变化适用于不同的聚合物化学成分和链的柔韧性。我们发现G()由每个构象自由度的平均质量(或体积)控制,并且“局部”分子松弛(涉及一些构象异构体)控制更大规模的合作α放松负责G. 我们提出动态促进,其中局部松弛促进相邻松弛,导致分层动力学,可以解释我们的观察,包括对数G()依赖。我们的研究为聚合物中的分子弛豫和玻璃化转变提供了新的理解,这为基于单体尺度指标的聚合物预测设计铺平了道路。
更新日期:2022-05-27
down
wechat
bug