当前位置: X-MOL 学术Nat. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enabling ultra-low-voltage switching in BaTiO3
Nature Materials ( IF 37.2 ) Pub Date : 2022-05-26 , DOI: 10.1038/s41563-022-01266-6
Y Jiang 1, 2 , E Parsonnet 3 , A Qualls 3 , W Zhao 1 , S Susarla 4 , D Pesquera 1, 5 , A Dasgupta 1 , M Acharya 1, 2 , H Zhang 1 , T Gosavi 6 , C-C Lin 6 , D E Nikonov 6 , H Li 6 , I A Young 6 , R Ramesh 1, 2, 3 , L W Martin 1, 2
Affiliation  

Single crystals of BaTiO3 exhibit small switching fields and energies, but thin-film performance is considerably worse, thus precluding their use in next-generation devices. Here, we demonstrate high-quality BaTiO3 thin films with nearly bulk-like properties. Thickness scaling provides access to the coercive voltages (<100 mV) and fields (<10 kV cm−1) required for future applications and results in a switching energy of <2 J cm−3 (corresponding to <2 aJ per bit in a 10 × 10 × 10 nm3 device). While reduction in film thickness reduces coercive voltage, it does so at the expense of remanent polarization. Depolarization fields impact polar state stability in thicker films but fortunately suppress the coercive field, thus driving a deviation from Janovec–Kay–Dunn scaling and enabling a constant coercive field for films <150 nm in thickness. Switching studies reveal fast speeds (switching times of ~2 ns for 25-nm-thick films with 5-µm-diameter capacitors) and a pathway to subnanosecond switching. Finally, integration of BaTiO3 thin films onto silicon substrates is shown. We also discuss what remains to be demonstrated to enable the use of these materials for next-generation devices.



中文翻译:

在 BaTiO3 中实现超低电压开关

BaTiO 3的单晶表现出小的开关场和能量,但薄膜性能相当差,因此排除了它们在下一代器件中的应用。在这里,我们展示了具有接近块状特性的高质量 BaTiO 3薄膜。厚度缩放提供了对未来应用所需的矫顽电压(<100 mV)和场(<10 kV cm -1)的访问,并导致<2 J cm -3的开关能量(对应于每比特<2 aJ) 10 × 10 × 10 纳米3设备)。虽然薄膜厚度的减小会降低矫顽电压,但这样做是以剩余极化为代价的。去极化场会影响较厚薄膜中的极性状态稳定性,但幸运的是抑制了矫顽场,从而偏离了 Janovec-Kay-Dunn 标度,并为厚度小于 150 nm 的薄膜实现了恒定的矫顽场。开关研究揭示了快速的速度(25 nm 厚的薄膜与 5 µm 直径的电容器的开关时间约为 2 ns)和亚纳秒开关的途径。最后,显示了将 BaTiO 3薄膜集成到硅衬底上。我们还讨论了如何将这些材料用于下一代设备。

更新日期:2022-05-27
down
wechat
bug