当前位置: X-MOL 学术ISIJ Int. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Internal Friction Behavior Associated with Martensitic Decomposition in Low-carbon Dual-phase Steel
ISIJ International ( IF 1.8 ) Pub Date : 2019-07-15 , DOI: 10.2355/isijinternational.isijint-2018-718
Jinfeng Zhang 1, 2 , Xiaochun Wu 1 , Na Min 1 , Shungui Zuo 3 , Mingjiang Jin 3
Affiliation  

Advanced high-strength steels, such as dual-phase (DP), transformation-induced plasticity (TRIP), and martensitic steels, have been developed and widely used in the automobile industry.1–3) Phenomena such as carbon segregation to structural defects, carbide precipitation in martensite or bainite, carbon partitioning from martensite to austenite during quenching, partitioning, and tempering involve carbon diffusion in a supersaturated matrix.4,5) However, the measurement of carbon diffusivity in steels is still very challenging. Internal friction (IF) technique has been proved as an effective approach to study the microstructural evolution, defects characteristics, or phase transformations inside the metal materials.6–9) For steels, an IF measurement with a high sensitivity could be utilized to characterize the interstitial or dissolved carbon atoms in body-centered cubic (BCC) structural phases such as ferrite and martensite phases. Some typical internal friction peaks observed in steels include the Snoek peak, the Snoek-Köster peak10) and the spurious peak induced by reduction of background internal friction, and so on. Such internal friction characteristics have been verified related with various occupation or movement behavior of the carbon atoms. Therefore, this suggests that the IF technique can be also used to investigate other Internal Friction Behavior Associated with Martensitic Decomposition in Low-carbon Dual-phase Steel

中文翻译:

低碳双相钢中与马氏体分解相关的内摩擦行为

先进的高强度钢,如双相钢 (DP)、相变诱发塑性钢 (TRIP) 和马氏体钢,已在汽车工业中得到开发和广泛应用。 1-3) 碳偏析等现象导致结构缺陷,马氏体或贝氏体中的碳化物析出,淬火、分配和回火过程中从马氏体到奥氏体的碳分配涉及过饱和基体中的碳扩散。4,5) 然而,钢中碳扩散率的测量仍然非常具有挑战性。内摩擦 (IF) 技术已被证明是研究金属材料内部的微观结构演变、缺陷特征或相变的有效方法。6-9) 对于钢,具有高灵敏度的 IF 测量可用于表征体心立方 (BCC) 结构相(如铁素体相和马氏体相)中的间隙或溶解碳原子。在钢中观察到的一些典型的内摩擦峰包括 Snoek 峰、Snoek-Köster 峰 10) 和由背景内摩擦减少引起的虚假峰等。这种内摩擦特性已被证实与碳原子的各种占据或运动行为有关。因此,这表明 IF 技术也可用于研究与低碳双相钢中马氏体分解相关的其他内摩擦行为 在钢中观察到的一些典型的内摩擦峰包括 Snoek 峰、Snoek-Köster 峰 10) 和由背景内摩擦减少引起的虚假峰等。这种内摩擦特性已被证实与碳原子的各种占据或运动行为有关。因此,这表明 IF 技术也可用于研究与低碳双相钢中马氏体分解相关的其他内摩擦行为 在钢中观察到的一些典型的内摩擦峰包括 Snoek 峰、Snoek-Köster 峰 10) 和由背景内摩擦减少引起的虚假峰等。这种内摩擦特性已被证实与碳原子的各种占据或运动行为有关。因此,这表明 IF 技术也可用于研究与低碳双相钢中马氏体分解相关的其他内摩擦行为
更新日期:2019-07-15
down
wechat
bug