当前位置: X-MOL 学术Int. J. Heat Mass Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced flow boiling heat transfer and suppressed boiling instability in counter-flow stepped microchannels
International Journal of Heat and Mass Transfer ( IF 5.0 ) Pub Date : 2022-05-23 , DOI: 10.1016/j.ijheatmasstransfer.2022.123025
Yun Li , Huiying Wu , Yuanpeng Yao

Flow boiling in microchannels is one of the most effective ways to solve the heat dissipation problems caused by the aggressive miniaturization of electronic components. In this study, counter-flow stepped microchannels (CSMC) are designed to address the main issues currently faced by boiling two-phase flow in microchannels: premature triggered critical heat flux (CHF) and severe boiling instability. Flow boiling experiments are conducted in three CSMCs with different step depths of 100 μm, 200 μm, and 300 μm, respectively. Deionized water is used as the working fluid, and the mass flux ranges from 118 kg/m2·s to 370 kg/m2·s. Combined with the visualization results captured by a high-speed camera, the boiling heat transfer and instability characteristics in three CSMCs are investigated and compared with the traditional parallel-flow straight microchannels (PMC). The results show that the CHF and average heat transfer coefficient (HTC) of CSMCs are increased by 50.0%-105.6% and 35.8%-90.3%, respectively, while the two-phase pressure drop is decreased by 61.7%-77.7% compared to PMC. The design of the step structure can disrupt the boundary layer, change the flow velocity between different steps, and promote fluid mixing, all of which are more pronounced in the case of deeper step depth. Therefore, with the increase in step depth, the CHF and average HTC are increased, and the two-phase pressure drop decreases. More importantly, the flow boiling instability in CSMC is well suppressed. The oscillations of the wall temperatures are eliminated during the flow boiling process in CSMC. Compared with PMC, the magnitudes of pressure oscillations in CSMCs are decreased by 52.8%-84.9%, and the rises in inlet temperatures caused by flow reversal are also achieved in a 6.1 °C-36.6 °C reduction. Similarly, the suppression effect on boiling instability increases with the step depth. The visualization results revealed that for CSMC with the largest step depth, the upstream expansion of bubbles is not observed throughout the flow boiling experiment. All above encouraging results indicate that the demonstrated counter-flow stepped microchannels would provide a good reference for future microchannel design.



中文翻译:

在逆流阶梯微通道中增强流动沸腾传热并抑制沸腾不稳定性

微通道中的流动沸腾是解决电子元件急剧小型化所带来的散热问题的最有效方法之一。在这项研究中,逆流阶梯式微通道 (CSMC) 旨在解决目前微通道中沸腾两相流面临的主要问题:过早触发临界热通量 (CHF) 和严重的沸腾不稳定性。流动沸腾实验在三个不同步深分别为 100 μm、200 μm 和 300 μm 的 CSMC 中进行。工作流体采用去离子水,质量通量为118 kg/m 2 ·s~370 kg/m 2·s. 结合高速相机拍摄的可视化结果,研究了三种CSMC的沸腾传热和不稳定性特性,并与传统的平行流直微通道(PMC)进行了比较。结果表明,CSMCs的CHF和平均传热系数(HTC)分别提高了50.0%-105.6%和35.8%-90.3%,而两相压降则降低了61.7%-77.7%。 PMC。台阶结构的设计可以打乱边界层,改变不同台阶之间的流速,促进流体混合,这些在台阶深度较深的情况下更为明显。因此,随着步深的增加,CHF和平均HTC增加,两相压降减小。更重要的是,CSMC 中的流动沸腾不稳定性得到很好的抑制。在 CSMC 的流动沸腾过程中消除了壁温的波动。与 PMC 相比,CSMC 中的压力波动幅度降低了 52.8%-84.9%,并且由流动反转引起的入口温度升高也实现了 6.1°C-36.6°C 的降低。类似地,对沸腾不稳定性的抑制作用随着步长的增加而增加。可视化结果表明,对于步深最大的 CSMC,在整个流动沸腾实验过程中没有观察到气泡的上游膨胀。以上所有令人鼓舞的结果表明,所展示的逆流阶梯微通道将为未来的微通道设计提供良好的参考。在 CSMC 的流动沸腾过程中消除了壁温的波动。与 PMC 相比,CSMC 中的压力波动幅度降低了 52.8%-84.9%,并且由流动反转引起的入口温度升高也实现了 6.1°C-36.6°C 的降低。类似地,对沸腾不稳定性的抑制作用随着步长的增加而增加。可视化结果表明,对于步深最大的 CSMC,在整个流动沸腾实验过程中没有观察到气泡的上游膨胀。以上所有令人鼓舞的结果表明,所展示的逆流阶梯微通道将为未来的微通道设计提供良好的参考。在 CSMC 的流动沸腾过程中消除了壁温的波动。与 PMC 相比,CSMC 中的压力波动幅度降低了 52.8%-84.9%,并且由流动反转引起的入口温度升高也实现了 6.1°C-36.6°C 的降低。类似地,对沸腾不稳定性的抑制作用随着步长的增加而增加。可视化结果表明,对于步深最大的 CSMC,在整个流动沸腾实验过程中没有观察到气泡的上游膨胀。以上所有令人鼓舞的结果表明,所展示的逆流阶梯微通道将为未来的微通道设计提供良好的参考。由流动反转引起的入口温度升高也可以在 6.1°C-36.6°C 的降低中实现。类似地,对沸腾不稳定性的抑制作用随着步长的增加而增加。可视化结果表明,对于步深最大的 CSMC,在整个流动沸腾实验过程中没有观察到气泡的上游膨胀。以上所有令人鼓舞的结果表明,所展示的逆流阶梯微通道将为未来的微通道设计提供良好的参考。由流动反转引起的入口温度升高也可以在 6.1°C-36.6°C 的降低中实现。类似地,对沸腾不稳定性的抑制作用随着步长的增加而增加。可视化结果表明,对于步深最大的 CSMC,在整个流动沸腾实验过程中没有观察到气泡的上游膨胀。以上所有令人鼓舞的结果表明,所展示的逆流阶梯微通道将为未来的微通道设计提供良好的参考。在整个流动沸腾实验中没有观察到气泡的上游膨胀。以上所有令人鼓舞的结果表明,所展示的逆流阶梯微通道将为未来的微通道设计提供良好的参考。在整个流动沸腾实验中没有观察到气泡的上游膨胀。以上所有令人鼓舞的结果表明,所展示的逆流阶梯微通道将为未来的微通道设计提供良好的参考。

更新日期:2022-05-23
down
wechat
bug