当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Study on aerodynamic features of rod thrust vector control for physical applications
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ( IF 1.1 ) Pub Date : 2022-05-15 , DOI: 10.1177/09544100221095363
Kexin Wu 1, 2
Affiliation  

Mechanical thrust vector control is a classical and important branch in the vectoring control field, offering an extremely reliable control effect. In this article, a simple technology using a cylindrical rod has been numerically investigated to achieve jet controls for three-dimensional conical axisymmetric nozzles. Complex flow phenomena caused by the cylindrical rod on a flat plate and in a converging–diverging nozzle are elucidated with the purpose of a profound understanding of this technique for physical applications. Published experimental data are used to validate the dependability of current CFD results. A grid sensitivity study is carried through and analyzed. The result section discusses the impacts of three factors on performance, involving the rod penetration height, rod location, and nozzle pressure ratio. Significant vectoring performance variations and flow topologies descriptions are illuminated in full detail. When the rod penetration height changes, this technique has an effective control range, namely H/Rt ≤ 0.4. In this effective control range, the vectoring angle and efficiency increase and the thrust coefficient decreases with a deeper rod insertion. As the rod location moves downstream towards the nozzle exit, the vectoring angle increases and the thrust coefficient decays. Moreover, the direction of jet deflection remarkably varies for diverse rod locations. While the nozzle pressure ratio increases, the vectoring angle initially increases to reach the maximum level and then decays slightly. Meanwhile, the thrust coefficient continuously increases.

中文翻译:

物理应用杆推力矢量控制气动特性研究

机械推力矢量控制是矢量控制领域的一个经典而重要的分支,具有极其可靠的控制效果。在本文中,对使用圆柱杆的简单技术进行了数值研究,以实现三维锥形轴对称喷嘴的射流控制。阐明由平板上的圆柱杆和收敛-发散喷嘴引起的复杂流动现象,目的是深入了解该技术在物理应用中的应用。已发布的实验数据用于验证当前 CFD 结果的可靠性。进行并分析了电网敏感性研究。结果部分讨论了三个因素对性能的影响,包括杆穿透高度、杆位置和喷嘴压力比。显着的矢量性能变化和流拓扑描述被详细说明。当穿杆高度发生变化时,该技术有一个有效的控制范围,即H/Rt≤0.4。在这个有效控制范围内,随着杆插入深度增加,矢量角和效率增加,推力系数减小。随着杆位置向下游向喷嘴出口移动,矢量角增加,推力系数衰减。此外,对于不同的杆位置,射流偏转的方向显着变化。当喷嘴压力比增加时,矢量角最初增加达到最大水平,然后略有衰减。同时,推力系数不断增加。
更新日期:2022-05-15
down
wechat
bug