当前位置: X-MOL 学术Pestic. Biochem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiple resistance to ACCase- and ALS-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds.) in China
Pesticide Biochemistry and Physiology ( IF 4.2 ) Pub Date : 2022-05-20 , DOI: 10.1016/j.pestbp.2022.105127
Yuning Lan 1 , Wenyu Li 2 , Shouhui Wei 1 , Hongjuan Huang 1 , Zhen Liu 1 , Zhaofeng Huang 1
Affiliation  

Two black-grass (Alopecurus myosuroides Huds.) populations (R2105 and R1027) that were suspected to be resistant to clodinafop-propargyl, an acetyl-CoAcarboxylase (ACCase) inhibitor, were found in winter wheat fields in China. Research was carried out to investigate whether resistance to clodinafop-propargyl was present and the molecular mechanism of herbicide resistance in these two populations. Dose–response assays confirmed high level resistance to clodinafop-propargyl in both R2105 and R1027 populations, with resistance indexes 25.1 and 22.1. ACCase gene sequence comparison revealed three amino acid mutations (Trp-1999-Leu, Ile-2041-Asn, or Asp-2078-Gly) in R2105 population and Ile-2041-Asn mutation in R1027 population. Sensitivity to other herbicides assays indicated that R2105 and R1027 populations were cross resistant to fenoxaprop-P-ethyl and multiple resistant to pyroxsulam and mesosulfuron-methyl. The ALS gene sequence analysis revealed that all resistant individuals in R2105 and R1027 populations had the Trp-574-Leu mutation. Applying malathion, significantly decreased the rate of metabolism of clodinafop-propargyl in both R2105 and R1027 populations. This is the first report of multiple resistance to ACCase- and ALS-inhibiting herbicides conferred by target-site mutations and enhanced metabolism in black-grass in China.

更新日期:2022-05-20
down
wechat
bug