当前位置: X-MOL 学术Micromachines › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Microfluidics Temperature Compensating and Monitoring Based on Liquid Metal Heat Transfer
Micromachines ( IF 3.0 ) Pub Date : 2022-05-19 , DOI: 10.3390/mi13050792
Jiyu Meng 1 , Chengzhuang Yu 1 , Shanshan Li 1, 2 , Chunyang Wei 1 , Shijie Dai 1 , Hui Li 1 , Junwei Li 3
Affiliation  

Microfluidic devices offer excellent heat transfer, enabling the biochemical reactions to be more efficient. However, the precision of temperature sensing and control of microfluids is limited by the size effect. Here in this work, the relationship between the microfluids and the glass substrate of a typical microfluidic device is investigated. With an intelligent structure design and liquid metal, we demonstrated that a millimeter-scale industrial temperature sensor could be utilized for temperature sensing of micro-scale fluids. We proposed a heat transfer model based on this design, where the local correlations between the macro-scale temperature sensor and the micro-scale fluids were investigated. As a demonstration, a set of temperature-sensitive nucleic acid amplification tests were taken to show the precision of temperature control for micro-scale reagents. Comparations of theoretical and experimental data further verify the effectiveness of our heat transfer model. With the presented compensation approach, the slight fluorescent intensity changes caused by isothermal amplification polymerase chain reaction (PCR) temperature could be distinguished. For instance, the probability distribution plots of fluorescent intensity are significant from each other, even if the amplification temperature has a difference of 1 °C. Thus, this method may serve as a universal approach for micro–macro interface sensing and is helpful beyond microfluidic applications.

中文翻译:

基于液态金属传热的微流控温度补偿与监测

微流体装置提供出色的热传递,使生化反应更有效。然而,微流体的温度传感和控制精度受到尺寸效应的限制。在这项工作中,研究了典型微流体装置的微流体与玻璃基板之间的关系。通过智能结构设计和液态金属,我们证明了毫米级工业温度传感器可用于微尺度流体的温度传感。我们在此设计的基础上提出了一种传热模型,其中研究了宏观温度传感器与微观流体之间的局部相关性。作为示范,进行了一组温度敏感的核酸扩增试验,证明了微量试剂的温度控制精度。理论和实验数据的比较进一步验证了我们的传热模型的有效性。通过所提出的补偿方法,可以区分由等温扩增聚合酶链反应 (PCR) 温度引起的轻微荧光强度变化。例如,荧光强度的概率分布图彼此之间是显着的,即使扩增温度相差 1°C。因此,该方法可以作为微-宏界面传感的通用方法,并有助于超越微流体应用。理论和实验数据的比较进一步验证了我们的传热模型的有效性。通过所提出的补偿方法,可以区分由等温扩增聚合酶链反应 (PCR) 温度引起的轻微荧光强度变化。例如,荧光强度的概率分布图彼此之间是显着的,即使扩增温度相差 1°C。因此,该方法可以作为微-宏界面传感的通用方法,并有助于超越微流体应用。理论和实验数据的比较进一步验证了我们的传热模型的有效性。通过所提出的补偿方法,可以区分由等温扩增聚合酶链反应 (PCR) 温度引起的轻微荧光强度变化。例如,荧光强度的概率分布图彼此之间是显着的,即使扩增温度相差 1°C。因此,该方法可以作为微-宏界面传感的通用方法,并有助于超越微流体应用。即使扩增温度相差 1°C,荧光强度的概率分布图也相互显着。因此,该方法可以作为微-宏界面传感的通用方法,并有助于超越微流体应用。即使扩增温度相差 1°C,荧光强度的概率分布图也相互显着。因此,该方法可以作为微-宏界面传感的通用方法,并有助于超越微流体应用。
更新日期:2022-05-19
down
wechat
bug