当前位置: X-MOL 学术J. Contam. Hydrol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Diavik Waste Rock Project: Simulation of the geochemical evolution of a large test pile using a scaled temperature and sulfide-content dependent reactive transport model
Journal of Contaminant Hydrology ( IF 3.5 ) Pub Date : 2022-05-13 , DOI: 10.1016/j.jconhyd.2022.104023
David Wilson 1 , Richard T Amos 2 , Sean A Sinclair 3 , David C Sego 4 , Leslie Smith 5 , David W Blowes 1
Affiliation  

The Diavik Waste Rock Project (DWRP) project included four principal components focused on the development of techniques for assessing the environmental impacts of waste rock at mine sites. These components were small-volume laboratory experiments, intermediate- and large-volume field experiments, and assessment of the operational-scale waste-rock stockpiles, which facilitated characterization of waste-rock weathering at different scales. The heavily instrumented large-scale field experiments (test piles) were constructed to replicate, as closely as practicable, the temperature, water flow, and gas transport regimes of a waste-rock pile that is exposed to annual freezing and thawing cycles and to facilitate characterization of the long-term weathering of a low-sulfide waste rock. An integrated conceptual model of sulfide-bearing waste-rock weathering, developed at the small scale, was applied to assess the capacity of the conceptual model to capture the geochemical evolution of the waste rock at the large field-scale test-pile experiment. The integrated conceptual model was implemented using reactive transport code MIN3P, taking into account scale-dependent mechanisms. The test-pile mineralogy was similar to the small-scale laboratory experiments and included low-sulfide waste rock with an S content of 0.053 wt% (primarily pyrrhotite). The flow regime of the test pile was simulated using parameters measured as part of other DWRP investigations, including temporally variable infiltration estimates that represented the measured precipitation events at the site. The temporally and spatially variable temperature of the test pile was interpolated from values measured using instrumentation installed at the beginning of the experiment and was included in the simulation to refine the temperature dependence of the geochemical reactions. To allow continuous, multi-year simulation, freezing was also simulated to represent the conditions experienced at the test-pile experiment. Normalized root mean square error analysis of the large-scale field experiment simulation results indicated most parameters compare well to measured daily mass flux (i.e., the fraction of the range of annual values encompassed in the residual was less than 0.5 for SO4, Fe, Ni, Si, Ca, K, Mg, Na, and pH and 1.0 or less for all parameters except Cu). The method of using an integrated conceptual model developed from the results of humidity cell experiments to implement a mechanistic approach for assessing the primary geochemical processes of waste-rock weathering on a large scale was shown to provide reasonable results; however, the results are specific to the study site and the approach requires application to various sites under different geological and climatological conditions to facilitate further refinement.



中文翻译:

Diavik 废石项目:使用比例温度和硫化物含量依赖的反应输运模型模拟大型试验桩的地球化学演化

Diavik 废石项目 (DWRP) 项目包括四个主要组成部分,重点是开发评估矿山废石对环境影响的技术。这些组成部分是小体积的实验室实验、中等和大体积的现场实验,以及对运营规模的废石库存的评估,这有助于在不同尺度上表征废石风化。建造大量仪器仪表的大型现场实验(测试桩)以尽可能接近地复制暴露于年度冻融循环的废石桩的温度、水流和气体输送状态,并促进低硫废石的长期风化特征。应用小规模开发的含硫化物废石风化综合概念模型,评估概念模型在大型现场规模试验桩实验中捕捉废石地球化学演化的能力。综合概念模型是使用响应式传输代码 MIN3P 实现的,同时考虑了与规模相关的机制。试验桩矿物学与小规模实验室实验相似,包括硫含量为 0.053 wt% 的低硫化废石(主要是磁黄铁矿)。使用作为其他 DWRP 调查的一部分测量的参数来模拟测试桩的流动状态,包括时间变量 用于评估概念模型在大型现场规模试验桩实验中捕获废石地球化学演化的能力。综合概念模型是使用响应式传输代码 MIN3P 实现的,同时考虑了与规模相关的机制。试验桩矿物学与小规模实验室实验相似,包括硫含量为 0.053 wt% 的低硫化废石(主要是磁黄铁矿)。使用作为其他 DWRP 调查的一部分测量的参数来模拟测试桩的流动状态,包括时间变量 用于评估概念模型在大型现场规模试验桩实验中捕获废石地球化学演化的能力。综合概念模型是使用响应式传输代码 MIN3P 实现的,同时考虑了与规模相关的机制。试验桩矿物学与小规模实验室实验相似,包括硫含量为 0.053 wt% 的低硫化废石(主要是磁黄铁矿)。使用作为其他 DWRP 调查的一部分测量的参数来模拟测试桩的流动状态,包括时间变量 试验桩矿物学与小规模实验室实验相似,包括硫含量为 0.053 wt% 的低硫化废石(主要是磁黄铁矿)。使用作为其他 DWRP 调查的一部分测量的参数来模拟测试桩的流动状态,包括时间变量 试验桩矿物学与小规模实验室实验相似,包括硫含量为 0.053 wt% 的低硫化废石(主要是磁黄铁矿)。使用作为其他 DWRP 调查的一部分测量的参数来模拟测试桩的流动状态,包括时间变量入渗估计,代表现场测量的降水事件。测试桩的时间和空间变化温度是从使用在实验开始时安装的仪器测量的值中插值的,并包含在模拟中以细化地球化学反应的温度依赖性。为了允许连续多年的模拟,还模拟了冻结以代表在测试桩实验中经历的条件。大规模现场试验模拟结果的归一化均方根误差分析表明,大多数参数与测量的每日质量通量相比(即,SO 4残差中包含的年度值范围的分数小于 0.5), Fe, Ni, Si, Ca, K, Mg, Na, and pH and 1.0 or less for all parameters except Cu). 使用从湿度电池实验结果开发的综合概念模型实施一种机制方法来评估大规模废石风化的主要地球化学过程的方法被证明可以提供合理的结果;然而,结果是特定于研究地点的,该方法需要应用于不同地质和气候条件下的不同地点,以促进进一步完善。

更新日期:2022-05-13
down
wechat
bug