当前位置: X-MOL 学术IEEE Trans. NanoBiosci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual Cavity Dielectric Modulated Ferroelectric Charge Plasma Tunnel FET as Biosensor: For Enhanced Sensitivity
IEEE Transactions on NanoBioscience ( IF 3.7 ) Pub Date : 5-11-2022 , DOI: 10.1109/tnb.2022.3174266
Shradhya Singh 1 , Sangeeta Singh 1 , Mustafa K. A. Mohammed 2 , Girish Wadhwa 3
Affiliation  

This work reports a biosensor based on the dual cavity dielectric modulated ferroelectric charge plasma Tunnel FET (FE-CP-TFET) with enhanced sensitivity. By incorporating underlap and dielectric modulation phenomena, ultra sensitive, and label-free detection of biomolecules is achieved. The cavity is carved underneath the source-gate dielectric for the immobilization of the biomolecules. The ferroelectric (FE) material is used as a gate stack to realize a negative capacitance effect to amplify the low gate voltage. To avoid the issues with metallurgical doping such as random dopant fluctuations (RDFs), ambipolar conduction, and increased thermal budget, the charge plasma concept is deployed. Based on our exhaustive ATLAS 2D TCAD study, the electric field, hole concentration, and energy band diagram of the proposed device are critically analyzed to provide a better insight into the biosensor working mechanism. Here, two different figures-of merits (FOMs) for the proposed biosensor are investigated such as sensitivity and linearity. Sensitivity has been measured in terms of drain current, ${I}_{ \mathrm{\scriptscriptstyle ON}}$ to ${I}_{ \mathrm{\scriptscriptstyle OFF}}$ ratio, electric field, and transconductance sensitivity. Linearity analysis of the proposed structure includes ${I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}}$ ratio. The reported biosensor is capable of detecting several biomolecules such as (neutral and charged as well) Streptavidin (2.1), 3-aminopropyltriethoxysilane (APTES) (K $=3.57$ ), Keratin (K $=8$ ), T7 (K $=6.3$ ) and Gelatin (K $=12$ ). It was observed that the optimized cavity structure demonstrates high drain current sensitivity ( $2.7\times {10}^{{8}}$ ) as well as high ${I}_{ \mathrm{\scriptscriptstyle ON}}/\text {I}_{ \mathrm{\scriptscriptstyle OFF}}$ sensitivity ( $1.45\times {10}^{{8}}$ ). Further, the linearity analysis shows that the Pearson’s coefficient of both structures have been achieved as ( ${r}^{{2}} \ge0.8$ ). It is conferred from the results that our biosensor can be a better alternative for the detection of the various neutral and charged biomolecules.

中文翻译:


作为生物传感器的双腔电介质调制铁电电荷等离子体隧道 FET:增强灵敏度



这项工作报告了一种基于双腔介电调制铁电电荷等离子体隧道 FET (FE-CP-TFET) 的生物传感器,具有增强的灵敏度。通过结合欠重叠和介电调制现象,实现了生物分子的超灵敏、无标记检测。在源极-栅极电介质下方雕刻出空腔,用于固定生物分子。采用铁电(FE)材料作为栅堆叠,实现负电容效应,放大低栅电压。为了避免冶金掺杂的问题,例如随机掺杂波动 (RDF)、双极传导和增加的热预算,采用了电荷等离子体概念。基于我们详尽的 ATLAS 2D TCAD 研究,对所提出的器件的电场、空穴浓度和能带图进行了严格的分析,以更好地了解生物传感器的工作机制。在这里,研究了所提出的生物传感器的两个不同的品质因数(FOM),例如灵敏度和线性度。灵敏度通过漏极电流、${I}_{ \mathrm{\scriptscriptstyle ON}}$ 与 ${I}_{ \mathrm{\scriptscriptstyle OFF}}$ 比率、电场和跨导灵敏度来测量。所提出结构的线性分析包括 ${I}_{ \mathrm{\scriptscriptstyle ON}}/{I}_{ \mathrm{\scriptscriptstyle OFF}}$ 比率。报道的生物传感器能够检测多种生物分子,例如(中性和带电)链霉亲和素 (2.1)、3-氨基丙基三乙氧基硅烷 (APTES) (K $=3.57$ )、角蛋白 (K $=8$ )、T7 (K $ =6.3$ )和明胶(K $=12$ )。据观察,优化的腔体结构表现出高漏极电流灵敏度($2.7\times {10}^{{8}}$ ) 以及高 ${I}_{ \mathrm{\scriptscriptstyle ON}}/\text {I}_{ \mathrm{\scriptscriptstyle OFF}}$ 灵敏度( $1.45\times {10}^{{8}}$ )。此外,线性分析表明两种结构的 Pearson 系数均达到 ( ${r}^{{2}} \ge0.8$ )。结果表明,我们的生物传感器可以成为检测各种中性和带电生物分子的更好替代方案。
更新日期:2024-08-28
down
wechat
bug