当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multifunctional and Transformative Metaphotonics with Emerging Materials
Chemical Reviews ( IF 51.4 ) Pub Date : 2022-05-12 , DOI: 10.1021/acs.chemrev.1c01029
Pavel Tonkaev 1, 2 , Ivan S Sinev 2 , Mikhail V Rybin 2, 3 , Sergey V Makarov 2 , Yuri Kivshar 1, 2
Affiliation  

Future technologies underpinning multifunctional physical and chemical systems and compact biological sensors will rely on densely packed transformative and tunable circuitry employing nanophotonics. For many years, plasmonics was considered as the only available platform for subwavelength optics, but the recently emerged field of resonant metaphotonics may provide a versatile practical platform for nanoscale science by employing resonances in high-index dielectric nanoparticles and metasurfaces. Here, we discuss the recently emerged field of metaphotonics and describe its connection to material science and chemistry. For tunabilty, metaphotonics employs a variety of the recently highlighted materials such as polymers, perovskites, transition metal dichalcogenides, and phase change materials. This allows to achieve diverse functionalities of metasystems and metasurfaces for efficient spatial and temporal control of light by employing multipolar resonances and the physics of bound states in the continuum. We anticipate expanding applications of these concepts in nanolasers, tunable metadevices, metachemistry, as well as a design of a new generation of chemical and biological ultracompact sensing devices.

中文翻译:

新兴材料的多功能和变革性元光子学

支撑多功能物理和化学系统以及紧凑型生物传感器的未来技术将依赖于采用纳米光子学的密集封装转换和可调电路. 多年来,等离子体被认为是亚波长光学的唯一可用平台,但最近出现的共振超光子学领域可以通过在高折射率介电纳米粒子和超表面中使用共振,为纳米级科学提供一个多功能的实用平台。在这里,我们讨论了最近出现的超光子学领域,并描述了它与材料科学和化学的联系。对于可调性,元光子学采用了各种最近突出的材料,例如聚合物、钙钛矿、过渡金属二硫化物和相变材料。这允许通过采用多极共振和连续体中的束缚态物理学来实现超系统和超表面的多种功能,以实现对光的有效空间和时间控制。
更新日期:2022-05-12
down
wechat
bug