当前位置: X-MOL 学术Adv. Theory Simul. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
London Dispersion-Corrected Density Functionals Applied to van der Waals Stacked Layered Materials: Validation of Structure, Energy, and Electronic Properties
Advanced Theory and Simulations ( IF 2.9 ) Pub Date : 2022-05-06 , DOI: 10.1002/adts.202200055
Birkan Emrem 1 , Roman Kempt 1 , Kati Finzel 1 , Thomas Heine 1, 2, 3
Affiliation  

Most density functionals lack to correctly account for long-range London dispersion interactions, and numerous a posteriori correction schemes have been proposed in recent years. In van der Waals structures, the interlayer distance controls the proximity effect on the electronic structure, and the interlayer interaction energy indicates the possibility to mechanically exfoliate a layered material. For upcoming twisted van der Waals heterostructures, a reliable but efficient and scalable theoretical scheme to correctly predict the interlayer distance is required. Therefore, the performance of a series of popular London dispersion corrections combined with computationally affordable density functionals is validated. As reference data, the experimental interlayer distance of layered bulk materials is used, and corresponding interlayer interaction energies are calculated using the random phase approximation. We demonstrate that the SCAN-rVV10 and PBE-rVV10L functionals predict interlayer interaction energies and interlayer distances of the studied layered systems within the range of the defined error limits of 10 meV per atom and 0.12 Å, respectively. Semi-empirical and empirical dispersion-corrected functionals show significantly larger error bars, with PBE+dDsC performing best with comparable quality of geometries, but with higher interlayer interaction energy error limits of ≈20 meV per atom.

中文翻译:

伦敦色散校正密度泛函应用于范德华叠层材料:结构、能量和电子特性的验证

大多数密度泛函无法正确解释长程伦敦色散相互作用,近年来已经提出了许多后验校正方案。在范德华结构中,层间距离控制对电子结构的邻近效应,层间相互作用能表明机械剥离层状材料的可能性。对于即将到来的扭曲范德华异质结构,需要一种可靠但有效且可扩展的理论方案来正确预测层间距离。因此,验证了一系列流行的伦敦色散校正与计算上负担得起的密度泛函相结合的性能。作为参考数据,使用层状散装材料的实验层间距离,并使用随机相位近似计算相应的层间相互作用能。我们证明了 SCAN-rVV10 和 PBE-rVV10L 泛函分别在每个原子 10 meV 和 0.12 Å 的定义误差限制范围内预测了所研究层状系统的层间相互作用能和层间距离。半经验和经验色散校正泛函显示出明显更大的误差条,PBE+dDsC 在几何质量相当的情况下表现最佳,但层间相互作用能量误差限制更高,约为每原子 20 meV。我们证明了 SCAN-rVV10 和 PBE-rVV10L 泛函分别在每个原子 10 meV 和 0.12 Å 的定义误差限制范围内预测了所研究层状系统的层间相互作用能和层间距离。半经验和经验色散校正泛函显示出明显更大的误差条,PBE+dDsC 在几何质量相当的情况下表现最佳,但层间相互作用能量误差限制更高,约为每原子 20 meV。我们证明了 SCAN-rVV10 和 PBE-rVV10L 泛函分别在每个原子 10 meV 和 0.12 Å 的定义误差限制范围内预测了所研究层状系统的层间相互作用能和层间距离。半经验和经验色散校正泛函显示出明显更大的误差条,PBE+dDsC 在几何质量相当的情况下表现最佳,但层间相互作用能量误差限制更高,约为每原子 20 meV。
更新日期:2022-05-06
down
wechat
bug