当前位置: X-MOL 学术Hydrogeol. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical simulation of aquifer thermal energy storage using surface-based geologic modelling and dynamic mesh optimisation
Hydrogeology Journal ( IF 2.4 ) Pub Date : 2022-05-08 , DOI: 10.1007/s10040-022-02481-w
G. Regnier 1 , P. Salinas 1 , C. Jacquemyn 1 , M. D. Jackson 1
Affiliation  

Aquifer thermal energy storage (ATES) has significant potential to provide largescale seasonal cooling and heating in the built environment, offering a low-carbon alternative to fossil fuels. To deliver safe and sustainable ATES deployments, accurate numerical modelling tools must be used to predict flow and heat transport in the targeted aquifers. This paper presents a simulation methodology for ATES based on surface-based geologic modelling (SBGM) and dynamic mesh optimisation (DMO). DMO has been previously applied in other fields of computational fluid dynamics to reduce the cost of numerical simulations. DMO allows the resolution of the mesh to vary during a simulation to satisfy a user-defined solution precision for selected fields, refining where the solution fields are complex and coarsening elsewhere. SBGM allows accurate representation of complex geological heterogeneity and efficient application of DMO. The paper reports the first systematic convergence study for ATES simulations, and demonstrates the application of these methods in two ATES scenarios: a homogeneous aquifer, and a realistic heterogeneous fluvial aquifer containing meandering, channelised sand bodies separated by mudstones. It is demonstrated that DMO reduces the required number of mesh elements by a factor of up to 22 and simulation time by a factor of up to 15, whilst maintaining the same accuracy as an equivalent fixed mesh. DMO offers significant potential to reduce the computational cost of ATES simulations in both homogeneous and heterogeneous aquifers.



中文翻译:

基于地表地质建模和动态网格优化的含水层蓄热数值模拟

含水层热能储存 (ATES) 具有在建筑环境中提供大规模季节性冷却和加热的巨大潜力,是化石燃料的低碳替代品。为了提供安全和可持续的 ATES 部署,必须使用准确的数值建模工具来预测目标含水层中的流量和热量传输。本文提出了一种基于地表地质建模 (SBGM) 和动态网格优化 (DMO) 的 ATES 模拟方法。DMO 先前已应用于计算流体动力学的其他领域,以降低数值模拟的成本。DMO 允许在模拟过程中改变网格的分辨率,以满足用户定义的选定字段的解精度,在解字段复杂的地方细化并在其他地方粗化。SBGM 允许准确表示复杂的地质异质性和 DMO 的有效应用。该论文报告了 ATES 模拟的第一个系统收敛性研究,并展示了这些方法在两种 ATES 情景中的应用:均质含水层和现实的非均质河流含水层,其中包含被泥岩分隔的曲折河道砂体。结果表明,DMO 将所需的网格元素数量减少了高达 22 倍,模拟时间减少了高达 15 倍,同时保持了与等效固定网格相同的精度。DMO 为降低均质和异质含水层中 ATES 模拟的计算成本提供了巨大的潜力。该论文报告了 ATES 模拟的第一个系统收敛性研究,并展示了这些方法在两种 ATES 情景中的应用:均质含水层和现实的非均质河流含水层,其中包含被泥岩分隔的曲折河道砂体。结果表明,DMO 将所需的网格元素数量减少了高达 22 倍,模拟时间减少了高达 15 倍,同时保持了与等效固定网格相同的精度。DMO 为降低均质和异质含水层中 ATES 模拟的计算成本提供了巨大的潜力。该论文报告了 ATES 模拟的第一个系统收敛性研究,并展示了这些方法在两种 ATES 情景中的应用:均质含水层和现实的非均质河流含水层,其中包含被泥岩分隔的曲折河道砂体。结果表明,DMO 将所需的网格元素数量减少了高达 22 倍,模拟时间减少了高达 15 倍,同时保持了与等效固定网格相同的精度。DMO 为降低均质和异质含水层中 ATES 模拟的计算成本提供了巨大的潜力。被泥岩隔开的通道化砂体。结果表明,DMO 将所需的网格元素数量减少了高达 22 倍,模拟时间减少了高达 15 倍,同时保持了与等效固定网格相同的精度。DMO 为降低均质和异质含水层中 ATES 模拟的计算成本提供了巨大的潜力。被泥岩隔开的通道化砂体。结果表明,DMO 将所需的网格元素数量减少了高达 22 倍,模拟时间减少了高达 15 倍,同时保持了与等效固定网格相同的精度。DMO 为降低均质和异质含水层中 ATES 模拟的计算成本提供了巨大的潜力。

更新日期:2022-05-09
down
wechat
bug