当前位置: X-MOL 学术Nanophotonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Angularly anisotropic tunability of upconversion luminescence by tuning plasmonic local-field responses in gold nanorods antennae with different configurations
Nanophotonics ( IF 6.5 ) Pub Date : 2022-04-03 , DOI: 10.1515/nanoph-2022-0037
Chengda Pan 1, 2 , Qiang Ma 1, 2 , Shikang Liu 1, 2 , Yingxian Xue 1, 2 , Zhiyun Fang 1, 2 , Shiyu Zhang 1, 2 , Mengyao Qin 1, 2 , E Wu 1, 2, 3, 4 , Botao Wu 1, 2
Affiliation  

Optical polarization has attracted considerable research attention by extra detection dimension in angular space, flourishing modern optoelectronic applications. Nonetheless, purposive polarization controlling at nanoscales and even at the single-particle level constitutes a challenge. Plasmonic nanoantenna opens up new perspectives in polarization state modification. Herein, we report angular-dependent upconversion luminescence (UCL) of rare-earth ions doped upconversion nanoparticles (UCNPs) in both emission and excitation polarization via constructing angularly anisotropic plasmonic local-field distributions in gold nanorods (Au NRs) antennae with different configurations at a single-particle level. The UCL of UCNP tailored by plasmonic Au NRs nanoantennae is enhanced and exhibits linear polarization. The highest enhancement factor of 138 is obtained in the collinear Au NR-UCNP-Au NR configuration under parallel excitation. Simultaneously, the maximum degree of linear polarization (DOLP) of UCL with factors of 85% and 81% are achieved in the same structure in emission and excitation polarization measurements, respectively. The observed linear polarizations and UCL enhancements are due to varied resonant responses at 660 nm and the anisotropic near-field enhancement in different nanoantennae-load UCNP. The theoretical simulations reveal the periodic changing of near-field enhancement factors of nanoantennae in angular space with the incident light polarization angles and are well-matched with the experimental results.

中文翻译:

通过调整具有不同配置的金纳米棒天线中的等离子体局部场响应来实现上转换发光的角度各向异性可调

光偏振通过在角空间中的额外检测维度引起了相当多的研究关注,蓬勃发展了现代光电应用。尽管如此,在纳米级甚至单粒子水平上进行有目的的极化控制是一个挑战。等离子体纳米天线开辟了偏振态修改的新视角。在此,我们通过在具有不同配置的金纳米棒 (Au NRs) 天线中构建角度各向异性等离子体局部场分布,报告了稀土离子掺杂上转换纳米粒子 (UCNPs) 在发射和激发极化中的角度依赖性上转换发光 (UCL)单粒子水平。由等离子 Au NRs 纳米天线定制的 UCNP 的 UCL 得到增强并表现出线性极化。在平行激发下的共线 Au NR-UCNP-Au NR 配置中获得了 138 的最高增强因子。同时,在发射和激发偏振测量的相同结构中,UCL 的最大线性偏振度 (DOLP) 分别为 85% 和 81%。观察到的线性极化和 UCL 增强是由于 660 nm 处的不同谐振响应和不同纳米天线负载 UCNP 中的各向异性近场增强。理论模拟揭示了纳米天线近场增强因子在角空间中随入射光偏振角的周期性变化,与实验结果吻合较好。在发射和激发偏振测量的相同结构中,UCL 的最大线性偏振度 (DOLP) 分别为 85% 和 81%。观察到的线性极化和 UCL 增强是由于 660 nm 处的不同谐振响应和不同纳米天线负载 UCNP 中的各向异性近场增强。理论模拟揭示了纳米天线近场增强因子在角空间中随入射光偏振角的周期性变化,与实验结果吻合较好。在发射和激发偏振测量的相同结构中,UCL 的最大线性偏振度 (DOLP) 分别为 85% 和 81%。观察到的线性极化和 UCL 增强是由于 660 nm 处的不同谐振响应和不同纳米天线负载 UCNP 中的各向异性近场增强。理论模拟揭示了纳米天线近场增强因子在角空间中随入射光偏振角的周期性变化,与实验结果吻合较好。观察到的线性极化和 UCL 增强是由于 660 nm 处的不同谐振响应和不同纳米天线负载 UCNP 中的各向异性近场增强。理论模拟揭示了纳米天线近场增强因子在角空间中随入射光偏振角的周期性变化,与实验结果吻合较好。观察到的线性极化和 UCL 增强是由于 660 nm 处的不同谐振响应和不同纳米天线负载 UCNP 中的各向异性近场增强。理论模拟揭示了纳米天线近场增强因子在角空间中随入射光偏振角的周期性变化,与实验结果吻合较好。
更新日期:2022-04-03
down
wechat
bug