当前位置: X-MOL 学术J. Non Equilib. Thermodyn. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effect of Cross-Sectional Geometry on Hydrothermal Behavior of Microchannel Heat Sink
Journal of Non-Equilibrium Thermodynamics ( IF 4.3 ) Pub Date : 2022-02-08 , DOI: 10.1515/jnet-2021-0067
Faraz Ahmad 1 , Fawad Ahmed 1 , Husan Ali 2 , Zabdur Rehman 1 , Muhammad Suleman 3 , Izaz Raouf 4
Affiliation  

The aim of this paper is to numerically analyze the hydrothermal behavior of different cross-sectional geometries of microchannel heat sinks (MCHSs) and conduct a comparative analysis of traditional and non-traditional designs using ANSYS Fluent. It is expected that the proposed design discussed in this paper will improve the performance of MCHSs by maximizing the cooling capability and minimizing the thermal resistance and entropy generation rate, thus leading to better energy efficiency. The channel designs include a rectangular microchannel (RMC), a circular microchannel (CMC), an elliptical microchannel (EMC), a trapezoidal microchannel (TMC), a hexagonal microchannel (HMC), and a new microchannel (NMC) which has a plus-like shape. The discussed geometry of the NMC is designed in such a way that it maximizes the cross-sectional area and the wetted perimeter of the channel, keeping the hydraulic diameter constant ( D h = 412 {D_{h}}=412 µm). The performance of various channels is compared on the basis of pressure drop, wall temperature, thermal enhancement factor, thermal resistance, thermal transport efficiency, and entropy generation rates. It has been observed that the NMC is capable of cooling effectively and it can achieve a minimum wall temperature of 305 K, thus offering the lowest thermal resistance ( R th {R_{\mathrm{th}}} ), irreversible heat loss, and entropy generation rate. Moreover, the NMC has achieved the highest value of the thermal enhancement factor, i. e., 1.13, at Re = 1 , 000 \mathrm{Re}=1,000 . Similarly, it has the highest thermal transport efficiency of almost 97 % at Re = 1 , 000 \mathrm{Re}=1,000 , followed by the TMC and the RMC. Overall, the NMC has achieved the best performance in all aspects, followed by the RMC and TMC. The performance of the EMC, the CMC, and the HMC was found to be the worst in this study.

中文翻译:

横截面几何形状对微通道散热器水热行为的影响

本文的目的是数值分析微通道散热器 (MCHS) 不同截面几何形状的水热行为,并使用 ANSYS Fluent 对传统和非传统设计进行比较分析。预计本文讨论的提议设计将通过最大化冷却能力和最小化热阻和熵产生率来提高 MCHS 的性能,从而提高能源效率。通道设计包括矩形微通道 (RMC)、圆形微通道 (CMC)、椭圆形微通道 (EMC)、梯形微通道 (TMC)、六边形微通道 (HMC) 和具有加号的新型微通道 (NMC) - 形状。 D H = 412 {D_{h}}=412 微米)。根据压降、壁温、热增强因子、热阻、热传输效率和熵产生率对各种通道的性能进行比较。已经观察到 NMC 能够有效冷却,它可以达到 305 K 的最低壁温,从而提供最低的热阻 ( R th {R_{\mathrm{th}}} )、不可逆热损失和熵产生率。此外,NMC 达到了热增强因子的最高值,即 1.13,在 关于 = 1 , 000 \mathrm{Re}=1,000 . 同样,它具有最高的热传输效率,几乎 97% 关于 = 1 , 000 \mathrm{Re}=1,000 ,其次是 TMC 和 RMC。总体而言,NMC在各方面都取得了最好的成绩,其次是RMC和TMC。在这项研究中发现 EMC、CMC 和 HMC 的性能最差。
更新日期:2022-02-08
down
wechat
bug