当前位置: X-MOL 学术Int. J. Coal Geol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A theoretical and experimental investigation of gas adsorption-dependent bulk modulus of fractured coal
International Journal of Coal Geology ( IF 5.6 ) Pub Date : 2022-05-07 , DOI: 10.1016/j.coal.2022.104013
Linan Su 1 , Adelina Lv 1 , Mohammad Ali Aghighi 1 , Hamid Roshan 1
Affiliation  

Changes in the bulk modulus of coal induced by sorbing gases occur during gas production and CO2 sequestration processes in coal seams. Understanding these changes, however, remains a challenge due to the complexity of coupled sorptive poromechanical processes. Some studies report that the bulk modulus of fractured coal reduces with gas adsorption, others state otherwise. In this study, we perform a set of triaxial experiments to investigate the bulk modulus variation in fractured coals with non-sorbing (helium) and sorbing (carbon dioxide) gases. We then present a theoretical model developed based on energy conservation and poroelasticity to predict the bulk modulus of fractured coal and its variation with sorbing gases. The model performance in predicting the bulk modulus is then assessed using the experimental results where a good performance is observed. A parametric study is further conducted to investigate the effect of key model parameters on the bulk modulus. The experimental results demonstrate that bulk modulus variations are predominantly caused by two counteracting effects: a hydromechanical effect resulting from a decrease in the effective stress due to pore pressure buildup and a sorptive-mechanical effect due to adsorption-induced matrix swelling. The experimental and theoretical results also show that these effects can lead to an increase or decrease in the bulk modulus of fractured coal. The parametric study using the theoretical model reveals that the initial fracture porosity and the adsorbed gas content are important factors controlling the variations in bulk modulus.



中文翻译:

压裂煤瓦斯吸附体积模量的理论与实验研究

在产气和 CO 2过程中发生吸附气体引起的煤体积模量变化煤层中的封存过程。然而,由于耦合吸附孔隙力学过程的复杂性,理解这些变化仍然是一个挑战。一些研究报告说,破碎煤的体积模量随着气体吸附而降低,其他研究则不然。在这项研究中,我们进行了一组三轴实验,以研究具有非吸附性(氦气)和吸附性(二氧化碳)气体的破裂煤的体积模量变化。然后,我们提出了一个基于能量守恒和多孔弹性的理论模型来预测破碎煤的体积模量及其随吸附气体的变化。然后使用观察到良好性能的实验结果评估预测体积模量的模型性能。进一步进行参数研究以研究关键模型参数对体积模量的影响。实验结果表明,体积模量变化主要是由两种抵消作用引起的:一种是由于孔隙压力增加而导致有效应力降低的流体力学作用,另一种是由于吸附引起的基质膨胀引起的吸着机械作用。实验和理论结果还表明,这些影响会导致破碎煤的体积模量增加或减少。使用理论模型进行参数研究表明,初始裂缝孔隙度和吸附气体含量是控制体积模量变化的重要因素。实验结果表明,体积模量变化主要是由两种抵消作用引起的:一种是由于孔隙压力增加而导致有效应力降低的流体力学作用,另一种是由于吸附引起的基质膨胀引起的吸着机械作用。实验和理论结果还表明,这些影响会导致破碎煤的体积模量增加或减少。使用理论模型进行参数研究表明,初始裂缝孔隙度和吸附气体含量是控制体积模量变化的重要因素。实验结果表明,体积模量变化主要是由两种抵消作用引起的:一种是由于孔隙压力增加而导致有效应力降低的流体力学作用,另一种是由于吸附引起的基质膨胀引起的吸着机械作用。实验和理论结果还表明,这些影响会导致破碎煤的体积模量增加或减少。使用理论模型进行参数研究表明,初始裂缝孔隙度和吸附气体含量是控制体积模量变化的重要因素。实验和理论结果还表明,这些影响会导致破碎煤的体积模量增加或减少。使用理论模型进行参数研究表明,初始裂缝孔隙度和吸附气体含量是控制体积模量变化的重要因素。实验和理论结果还表明,这些影响会导致破碎煤的体积模量增加或减少。使用理论模型进行参数研究表明,初始裂缝孔隙度和吸附气体含量是控制体积模量变化的重要因素。

更新日期:2022-05-07
down
wechat
bug