当前位置: X-MOL 学术ACS Eng. Au › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Novel Annular Jet Vortex Reactor for High-Temperature Thermochemical Conversion of Hydrocarbons to Acetylene
ACS Engineering Au ( IF 4.3 ) Pub Date : 2022-05-06 , DOI: 10.1021/acsengineeringau.2c00009
Sreekanth Pannala 1 , Vladimir Shtern 1 , Lei Chen 1 , David West 1
Affiliation  

This paper describes a novel reactor for acetylene synthesis by high-temperature thermochemical conversion of paraffin hydrocarbons. The reactor utilizes a conical annular swirling jet, which becomes extremely thin as swirl intensifies. The small thickness provides fast mass, momentum, and heat transfer to facilitate the rapid heating and conversion of the reactants. We employ a unique wall shape for the converging–diverging combustion zone, which maintains relatively low reactor wall temperature and avoids the need for external cooling. The wall shape and angle were derived from an approximate analytical solution of the Navier–Stokes and energy equations, which leads to the maximal jet flow rate and avoids wall separation under extreme high swirling flow conditions. The analytical solution predicts a high-speed swirling flow, which includes a thin annular conical diverging jet where mass, momentum, and heat fluxes concentrate, and chemical reactions can occur rapidly. Across the jet, the temperature sharply drops from its large near-axis value to its small near-wall value. We illustrate and study these features with the help of numerical simulations of the Navier–Stokes, energy, and species equations and proof-of-concept experiments. The experiments confirm the thin annular conical shape of the flame, which is blue, transparent, and well anchored near the throat. The present device produces a flow pattern, which minimizes the reactor wall temperature, while producing light olefins with high selectivity and conversion.

中文翻译:

用于烃类高温热化学转化为乙炔的新型环形喷射涡流反应器

本文介绍了一种新型反应器,用于通过石蜡烃的高温热化学转化合成乙炔。反应器采用锥形环形涡流射流,随着涡流的增强,它变得非常薄。小厚度提供快速的质量、动量和热传递,以促进反应物的快速加热和转化。我们为收敛-发散燃烧区采用独特的壁形,保持相对较低的反应器壁温并避免需要外部冷却。壁的形状和角度来自 Navier-Stokes 和能量方程的近似解析解,这导致了最大的射流流速并避免了在极高旋流条件下的壁分离。解析解预测高速旋流,其中包括一个薄的环形锥形发散射流,其中质量、动量和热通量集中,化学反应可以迅速发生。穿过射流,温度从其较大的近轴值急剧下降到其较小的近壁值。我们借助 Navier-Stokes、能量和物种方程的数值模拟以及概念验证实验来说明和研究这些特征。实验证实了火焰的细环形圆锥形状,它是蓝色的、透明的,并且在喉咙附近很好地锚定。本装置产生一种流动模式,使反应器壁温最小化,同时生产具有高选择性和转化率的轻质烯烃。温度从其较大的近轴值急剧下降到其较小的近壁值。我们借助 Navier-Stokes、能量和物种方程的数值模拟以及概念验证实验来说明和研究这些特征。实验证实了火焰的细环形圆锥形状,它是蓝色的、透明的,并且在喉咙附近很好地锚定。本装置产生一种流动模式,使反应器壁温最小化,同时生产具有高选择性和转化率的轻质烯烃。温度从其较大的近轴值急剧下降到其较小的近壁值。我们借助 Navier-Stokes、能量和物种方程的数值模拟以及概念验证实验来说明和研究这些特征。实验证实了火焰的细环形圆锥形状,它是蓝色的、透明的,并且在喉咙附近很好地锚定。本装置产生一种流动模式,使反应器壁温最小化,同时生产具有高选择性和转化率的轻质烯烃。它是蓝色的,透明的,并且很好地固定在喉咙附近。本装置产生一种流动模式,使反应器壁温最小化,同时生产具有高选择性和转化率的轻质烯烃。它是蓝色的,透明的,并且很好地固定在喉咙附近。本装置产生一种流动模式,使反应器壁温最小化,同时生产具有高选择性和转化率的轻质烯烃。
更新日期:2022-05-06
down
wechat
bug