当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Highly accessible and dense surface single metal FeN4 active sites for promoting the oxygen reduction reaction
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2022-05-04 , DOI: 10.1039/d2ee00542e
Guangbo Chen 1 , Yun An 2, 3 , Shengwen Liu 4 , Fanfei Sun 5 , Haoyuan Qi 1, 6 , Haofei Wu 7 , Yanghua He 4 , Pan Liu 7 , Run Shi 8 , Jian Zhang 9 , Agnieszka Kuc 3 , Ute Kaiser 6 , Tierui Zhang 8 , Thomas Heine 2, 3, 10 , Gang Wu 4 , Xinliang Feng 1, 11
Affiliation  

Single iron atom and nitrogen-codoped carbon (Fe–N–C) electrocatalysts, which have great potential to catalyze the kinetically sluggish oxygen reduction reaction (ORR), have been recognized as the most promising alternatives to the precious metal platinum. Unfortunately, the ORR properties of the existing Fe–N–C catalysts are significantly hampered by the inferior accessibility and intrinsic activity of FeN4 moieties. Here, we constructed densely exposed surface FeN4 moieties on a hierarchically porous carbon (sur-FeN4-HPC) by Fe ion anchoring and a subsequent pyrolysis strategy using the nitrogen-doped hierarchically porous carbon (NHPC) as the scaffold. The high surface area of the NHPC with abundant surface Fe anchoring sites enabled the successful fabrication of densely accessible FeN4 active moieties (34.7 × 1019 sites g−1) on sur-FeN4-HPC. First-principles calculations further suggested that the edge effect could regulate the electronic structure of the single Fe site, hence promoting the intrinsic ORR activity of the FeN4 moiety. As a result, the sur-FeN4-HPC electrocatalyst exhibited excellent ORR activity in acidic media with a high half-wave potential of 0.83 V (vs. the reversible hydrogen electrode). We further examined sur-FeN4-HPC as a cathode catalyst in proton exchange membrane fuel cells (PEMFCs). The membrane electrode assembly delivered a high current density of 24.2 mA cm−2 at 0.9 ViR-free (internal resistance-compensated voltage) under 1.0 bar O2 and a maximum peak power density of 0.412 W cm−2 under 1.0 bar air. Importantly, the catalyst demonstrated promising durability during 30 000 voltage cycles under harsh H2 and air conditions. The PEMFC performance of sur-FeN4-HPC outperforms those of the previously reported Fe–N–C electrocatalysts. The engineering of highly accessible and dense surface FeN4 sites on sur-FeN4-HPC offers a fruitful pathway for designing high-performance electrocatalysts for different electrochemical processes.

中文翻译:

用于促进氧还原反应的高度可及且致密的表面单金属 FeN4 活性位点

单铁原子和氮共掺杂碳 (Fe-N-C) 电催化剂具有催化动力学缓慢的氧还原反应 (ORR) 的巨大潜力,已被认为是贵金属铂最有希望的替代品。不幸的是,现有 Fe-N-C 催化剂的 ORR 特性受到 FeN 4部分较差的可及性和内在活性的显着阻碍。在这里,我们在分级多孔碳 ( sur -FeN 4 ) 上构建了密集暴露的表面 FeN 4-HPC)通过铁离子锚定和随后的热解策略,使用氮掺杂的分级多孔碳(NHPC)作为支架。NHPC 的高表面积具有丰富的表面 Fe 锚定位点,能够在sur -FeN 4 -HPC 上成功制造密集可接近的 FeN 4活性部分(34.7 × 10 19个位点 g -1)。第一性原理计算进一步表明边缘效应可以调节单个Fe位点的电子结构,从而促进FeN 4部分的内在ORR活性。结果,sur -FeN 4-HPC电催化剂在酸性介质中表现出优异的ORR活性,半波电位为0.83 V(可逆氢电极相比)。我们进一步研究了sur -FeN 4 -HPC 作为质子交换膜燃料电池 (PEMFC) 中的阴极催化剂。膜电极组件在 1.0 bar O 2下在 0.9 V iR-free(内部电阻补偿电压)下提供 24.2 mA cm -2的高电流密度,在 1.0 bar 空气下提供 0.412 W cm -2的最大峰值功率密度。重要的是,在恶劣的 H 2和空气条件下,该催化剂在 30 000 次电压循环期间表现出良好的耐久性。PEMFC 的性能sur -FeN 4 -HPC 优于先前报道的 Fe-N-C 电催化剂。sur -FeN 4 -HPC上高度可及且致密的表面 FeN 4 位点的工程设计为设计用于不同电化学过程的高性能电催化剂提供了一条富有成效的途径。
更新日期:2022-05-04
down
wechat
bug