当前位置: X-MOL 学术Agric. Water Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Development of subsurface drainage systems: Discharge – retention – recharge
Agricultural Water Management ( IF 5.9 ) Pub Date : 2022-05-02 , DOI: 10.1016/j.agwat.2022.107677
J.A. (Janine) de Wit 1, 2 , C.J. (Coen) Ritsema 2 , J.C. (Jos) van Dam 2 , G.A.P.H. (Gé) van den Eertwegh 3 , R.P. (Ruud) Bartholomeus 1, 2
Affiliation  

Sufficient freshwater is needed for water dependent sectors such as agriculture, nature, drinking water, and industry. However, even in low-lying, flood prone countries like the Netherlands, climate change, weather extremes, economic growth, urbanization, land subsidence and increased food production will make it more complex to guarantee sufficient freshwater for all sectors. Furthermore, the frequency and amplitude of extremely dry and wet weather conditions is expected to increase. The current Dutch water management system is not designed to anticipate these extremes. Over the last decades, drained Dutch agricultural fields, land consolidation and urbanization resulted in declining groundwater tables. Additionally, the fresh water demand of different sectors (agriculture, industry, drinking water) increased, causing an increased pressure on the regional groundwater system. As a consequence, the annual groundwater table in sandy soil areas dropped over time with the effect that, nowadays, fresh water is becoming scarce in dry periods. In this paper we provide insight in the shifting water management strategy in the Netherlands (1950–2020), with the corresponding drainage systems, developing from conventional drainage (approx. 1950–1990), to controlled drainage (1990’s onwards), climate adaptive drainage (2010 onwards) and subirrigation systems (2018 onwards). Furthermore, we provide insight in the effect of subirrigation on groundwater levels and crop yields, based on both international literature and measurements of Dutch field pilots. Although subirrigation can contribute to improved soil moisture conditions for crop growth on field scale, we show that the water volume needed for subirrigation can be large and could put a significant pressure on the available regional water sources. Therefore, efficient and responsible use of the available external water sources for subirrigation (e.g. surface water, treated waste water, or groundwater) is required. Finally, the implementation of controlled drainage with subirrigation asks for correct implementation in the regional balance: it requires an integral, catchment-wide approach.



中文翻译:

地下排水系统的开发:排放 - 保留 - 补给

农业、自然、饮用水和工业等依赖水的部门需要充足的淡水。然而,即使在荷兰等地势低洼、洪水泛滥的国家,气候变化、极端天气、经济增长、城市化、土地沉降和粮食产量增加,都将使确保所有部门有充足的淡水变得更加复杂。此外,预计极端干燥和潮湿天气条件的频率和幅度会增加。目前的荷兰水资源管理系统并非旨在预测这些极端情况。在过去的几十年里,荷兰农田排水、土地整合和城市化导致地下水位下降。此外,不同行业(农业、工业、饮用水)的淡水需求增加,导致区域地下水系统压力增加。结果,沙质土壤地区的年地下水位随着时间的推移而下降,导致如今干旱时期淡水变得稀缺。在本文中,我们深入了解荷兰(1950-2020 年)不断变化的水资源管理战略,以及相应的排水系统,从传统排水(大约 1950-1990 年)发展到受控排水(1990 年代以后)、气候适应性排水(2010 年起)和子灌溉系统(2018 年起)。此外,我们根据国际文献和荷兰田间试点的测量结果,深入了解地下灌溉对地下水位和作物产量的影响。尽管二次灌溉有助于改善田间作物生长的土壤水分条件,我们表明,二次灌溉所需的水量可能很大,并且可能对可用的区域水源造成巨大压力。因此,需要有效和负责任地使用可用的外部水源进行二次灌溉(例如地表水、处理过的废水或地下水)。最后,实施控制性排水和二次灌溉要求在区域平衡中正确实施:它需要一个整体的、流域范围的方法。

更新日期:2022-05-03
down
wechat
bug