当前位置: X-MOL 学术Eng. Appl. Comput. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the cavitation-induced collapse erosion of a turbofan fuel pump
Engineering Applications of Computational Fluid Mechanics ( IF 5.9 ) Pub Date : 2022-05-01 , DOI: 10.1080/19942060.2022.2067243
Si Wu 1 , Yadong Wu 1 , Jie Tian 1 , Hua Ouyang 1
Affiliation  

Cavitation is a challenging flow phenomenon that can adversely affect the hydraulic performance of centrifugal pumps. In this study, numerical investigations were carried out incorporating the Zwart cavitation model derived from Rayleigh–Plesset equation with the Navier–Stokes equations to study a damaged turbofan pump. Pressure fluctuation was analyzed with fast Fourier transform (FFT) in both non-cavitation and cavitation flow fields. The entropy production theory was used to further analyze the positions of vortex cores and energy-loss behaviors inside the pump. The results demonstrate that the numerically predicted positions of vortex cores in high-pressure regions agree well with the erosion positions determined under real working conditions. Herein, through combined analysis of the pressure contours and the vortex-core locations, we demonstrate that the erosion failure of the surface is caused by fatigue failure due to the collapse of cavities at vortex cores. The percentages of different kinds of entropy production rates under different mass flow rates in the whole calculation domain were calculated, and it was found that the impeller suffered the most energy loss. The results of the entropy production analysis can provide guidance for subsequent optimization of turbofan pumps.



中文翻译:

涡扇燃油泵气蚀引起的坍塌侵蚀

气蚀是一种具有挑战性的流动现象,会对离心泵的水力性能产生不利影响。在这项研究中,结合从 Rayleigh-Plesset 方程导出的 Zwart 空化模型和 Navier-Stokes 方程进行了数值研究,以研究损坏的涡扇泵。使用快速傅里叶变换 (FFT) 在非空化和空化流场中分析压力波动。利用熵产理论进一步分析了涡芯的位置和泵内的能量损失行为。结果表明,数值预测的高压区涡芯位置与实际工况下确定的侵蚀位置吻合较好。在此,通过压力等值线和涡核位置的综合分析,我们证明了表面的侵蚀破坏是由涡芯空腔坍塌引起的疲劳破坏引起的。计算了整个计算域内不同质量流量下不同种类熵产率的百分比,发现叶轮能量损失最大。熵产分析结果可为后续涡扇泵的优化提供指导。

更新日期:2022-05-02
down
wechat
bug