当前位置: X-MOL 学术Biomass Bioenergy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Biogenic nanoporous oxides recovery from by-products of bioenergy production: Rice husks and corncob biochars
Biomass & Bioenergy ( IF 5.8 ) Pub Date : 2022-04-28 , DOI: 10.1016/j.biombioe.2022.106455
R. Gómez-Vásquez 1 , E. Fernández-Ballesteros 1 , D. Camargo-Trillos 1
Affiliation  

The bioenergy production and their by-product valorization are valuable strategies to the sustainability enhanced targets. The present work integrates valorization of thermochemical conversion of residual biomass rice husk and corn cob, focusing on biogenic oxide production from biochar. The bioenergy analysis and biochar properties allowed to establish a specific energy potential (SEP) up to 7.47 kWhekgOxi1 and preliminary gas emission factor as greenhouse gas emission (GHG) down to 0.562 kgCO2eqkgOxid1 for the production of biochar oxides. A comparative study of the biogenic nanoporous recovery from biochar was done; four biochar samples come from different thermochemical conversions of rice husk, and corncob was treated by hydrochloric acid concentration between 0 and 10% w/w and subsequently oxidized at a temperature between 350 and 750 °C. The biochar and biochar oxides' physicochemical characteristics were carried out by ultimate analysis, Brunauer-Emmett-Telle specific surface area (ABET), pore size distribution, X-ray fluorescence (XRF), and Scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS). The biochar treatment allowed 55.5% and 41.2% of raw biogenic nanostructure recovery with a specific surface area up to 132 m2 g−1 and 25 m2 g−1 from the rice husk and corncob biochar, respectively. The biochar oxidation temperature was the most relevant factor for controlling oxides' nanoporosity from biochar, reducing mesopores volume in both cases. However, the hydrochloric acid concentration in leaching favors residual carbon removal and ensures nanostructure preservation of biogenic nanopores.



中文翻译:

从生物能源生产的副产品中回收生物纳米多孔氧化物:稻壳和玉米芯生物炭

生物能源生产及其副产品增值是实现可持续发展目标的宝贵战略。目前的工作整合了剩余生物质稻壳和玉米芯的热化学转化的价值,重点是从生物炭生产生物源氧化物。生物能源分析和生物炭特性允许建立特定的能源潜力(小号)高达 7.47千瓦时e-公斤氧化-1和初步气体排放因子作为温室气体排放(GHG)降至 0.562千克CO2-情商公斤氧化物-1用于生产生物炭氧化物。对生物炭回收生物源纳米孔进行了比较研究;四种生物炭样品来自稻壳的不同热化学转化,玉米芯用浓度在 0 到 10% w/w 之间的盐酸处理,随后在 350 到 750°C 的温度下氧化。通过最终分析、Brunauer-Emmett-Telle 比表面积 ( A BET )、孔径分布、X 射线荧光 ( XRF)和扫描电子显微镜 ( SEM)对生物炭和生物炭氧化物的物理化学特性进行了分析。色散 X 射线光谱仪 ( EDS). 生物炭处理使稻壳和玉米芯生物炭的比表面积分别高达 132 m 2  g -1和 25 m 2  g -1的原始生物纳米结构回收率分别为 55.5% 和 41.2%。生物炭氧化温度是控制生物炭中氧化物纳米孔隙率的最相关因素,在这两种情况下都会降低中孔体积。然而,浸出中的盐酸浓度有利于去除残留碳并确保生物纳米孔的纳米结构保存。

更新日期:2022-04-29
down
wechat
bug