当前位置: X-MOL 学术Cold Reg. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic bending of an ice wedge resting on a winkler-type elastic foundation
Cold Regions Science and Technology ( IF 3.8 ) Pub Date : 2022-04-27 , DOI: 10.1016/j.coldregions.2022.103579
Jeong-Hwan Kim 1, 2 , Wenjun Lu 3 , Raed Lubbad 3 , Sveinung Løset 3 , Beom-Seon Jang 4
Affiliation  

For most ice – sloping structure interactions, the incoming ice floes' failures are determined by the formation of circumferential cracks. This physical process can be simplified as analyzing the bending failure of an ice wedges resting on a fluid foundation. In history, closed-form analytical/empirical solutions have been developed for the static bending problem; and numerical solutions have been attempted for the dynamic scenarios. This paper revisits this classic problem and conducts extensive Finite Element Method (FEM) – based simulations on the dynamic bending of an ice wedge resting on a Winkler-type elastic foundation. The simulations are based on inputs (i.e., ice wedge geometry, loading radius and loading rate) within ranges that are typical for engineering applications. Based on the simulation, a database of ‘ice breaking load’ and ‘ice breaking length’ is constructed. Then we applied the Artificial Neural Network (ANN) method to establish the general relationship between the varying inputs (i.e., ice wedge angle, loading radius and rate) with the target outputs (i.e., breaking load and length). Such relationship is expressed in simple closed-form (i.e., Eq. (13)) allowing for easy, efficient and wide engineering applications. In the process of developing the ANN model, based on extensive FEM-simulations, we managed to extend Nevel's (1972) analytical solution. We also quantitatively demonstrated many well-known dynamic effects in this classic problem, e.g., a faster loading rate leads to a larger ice breaking load and a shorter ice breaking length. In addition, we also uncovered the failure pattern transition of an ice wedge, i.e., when an ice wedge's angle is below 100°, the circumferential crack will develop first; however, when the ice wedge gets wider than around 100°, depending on the loading radius and interaction velocity, the radial crack is more prone to develop first.



中文翻译:

Winkler 型弹性地基上冰楔的动态弯曲

对于大多数冰-倾斜结构的相互作用,进入的浮冰的破坏是由圆周裂缝的形成决定的。这个物理过程可以简化为分析冰楔在流体基础上的弯曲失效。历史上,已经为静态弯曲问题开发了封闭形式的分析/经验解决方案;已经尝试了动态场景的数值解。本文重新审视了这一经典问题,并对基于 Winkler 型弹性地基的冰楔的动态弯曲进行了广泛的有限元法 (FEM) 模拟。模拟基于工程应用典型范围内的输入(即冰楔几何形状、加载半径和加载速率)。基于模拟,建立了“破冰载荷”和“破冰长度”的数据库。然后我们应用人工神经网络(ANN)方法来建立变化的输入(即冰楔角、加载半径和速率)与目标输出(即断裂载荷和长度)之间的一般关系。这种关系以简单的封闭形式(即方程(13))表示,允许简单、高效和广泛的工程应用。在开发 ANN 模型的过程中,基于广泛的 FEM 模拟,我们设法扩展了 Nevel (1972) 的解析解。我们还在这个经典问题中定量地证明了许多众所周知的动态效应,例如,更快的加载速率导致更大的破冰载荷和更短的破冰长度。此外,我们还揭示了冰楔的破坏模式转变,即 当冰楔的角度小于100°时,周向裂纹首先发展;然而,当冰楔宽度超过 100° 时,取决于加载半径和相互作用速度,径向裂纹更容易首先发展。

更新日期:2022-04-27
down
wechat
bug